Matches in DBpedia 2014 for { <http://dbpedia.org/resource/P-constrained_group> ?p ?o. }
Showing items 1 to 26 of
26
with 100 items per page.
- P-constrained_group abstract "In mathematics, a p-constrained group is a finite group resembling the centralizer of an element of prime order p in a group of Lie type over a finite field of characteristic p. They were introduced by Gorenstein and Walter (1964, p.169) in order to extend some of Thompson's results about odd groups to groups with dihedral Sylow 2-subgroups.".
- P-constrained_group wikiPageExternalLink item=CHEL-301-H.
- P-constrained_group wikiPageID "21837511".
- P-constrained_group wikiPageRevisionID "493401200".
- P-constrained_group hasPhotoCollection P-constrained_group.
- P-constrained_group last "Gorenstein".
- P-constrained_group last "Walter".
- P-constrained_group loc "p.169".
- P-constrained_group year "1964".
- P-constrained_group subject Category:Finite_groups.
- P-constrained_group subject Category:Properties_of_groups.
- P-constrained_group type Abstraction100002137.
- P-constrained_group type FiniteGroups.
- P-constrained_group type Group100031264.
- P-constrained_group type Possession100032613.
- P-constrained_group type PropertiesOfGroups.
- P-constrained_group type Property113244109.
- P-constrained_group type Relation100031921.
- P-constrained_group comment "In mathematics, a p-constrained group is a finite group resembling the centralizer of an element of prime order p in a group of Lie type over a finite field of characteristic p. They were introduced by Gorenstein and Walter (1964, p.169) in order to extend some of Thompson's results about odd groups to groups with dihedral Sylow 2-subgroups.".
- P-constrained_group label "P-constrained group".
- P-constrained_group sameAs m.0jwt0_s.
- P-constrained_group sameAs Q7116928.
- P-constrained_group sameAs Q7116928.
- P-constrained_group sameAs P-constrained_group.
- P-constrained_group wasDerivedFrom P-constrained_group?oldid=493401200.
- P-constrained_group isPrimaryTopicOf P-constrained_group.