Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Parallelizable_manifold> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Parallelizable_manifold abstract "In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fieldson the manifold, such that at any point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a section on .A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .".
- Parallelizable_manifold wikiPageID "3108161".
- Parallelizable_manifold wikiPageRevisionID "591569784".
- Parallelizable_manifold hasPhotoCollection Parallelizable_manifold.
- Parallelizable_manifold subject Category:Differential_topology.
- Parallelizable_manifold subject Category:Fiber_bundles.
- Parallelizable_manifold subject Category:Manifolds.
- Parallelizable_manifold subject Category:Vector_bundles.
- Parallelizable_manifold type Artifact100021939.
- Parallelizable_manifold type Conduit103089014.
- Parallelizable_manifold type Manifold103717750.
- Parallelizable_manifold type Manifolds.
- Parallelizable_manifold type Object100002684.
- Parallelizable_manifold type Passage103895293.
- Parallelizable_manifold type PhysicalEntity100001930.
- Parallelizable_manifold type Pipe103944672.
- Parallelizable_manifold type Tube104493505.
- Parallelizable_manifold type Way104564698.
- Parallelizable_manifold type Whole100003553.
- Parallelizable_manifold type YagoGeoEntity.
- Parallelizable_manifold type YagoPermanentlyLocatedEntity.
- Parallelizable_manifold comment "In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fieldson the manifold, such that at any point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a section on .A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .".
- Parallelizable_manifold label "Parallelizable manifold".
- Parallelizable_manifold label "Variété parallélisable".
- Parallelizable_manifold label "Параллелизуемое многообразие".
- Parallelizable_manifold label "可平行化流形".
- Parallelizable_manifold sameAs Variété_parallélisable.
- Parallelizable_manifold sameAs m.08rxrm.
- Parallelizable_manifold sameAs Q1014612.
- Parallelizable_manifold sameAs Q1014612.
- Parallelizable_manifold sameAs Parallelizable_manifold.
- Parallelizable_manifold wasDerivedFrom Parallelizable_manifold?oldid=591569784.
- Parallelizable_manifold isPrimaryTopicOf Parallelizable_manifold.