Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Pentomino> ?p ?o. }
Showing items 1 to 49 of
49
with 100 items per page.
- Pentomino abstract "A pentomino is a plane geometric figure formed by joining five equal squares edge to edge. It is a polyomino with five cells. There are twelve pentominoes, not counting rotations and reflections as distinct. They are used chiefly in recreational mathematics for puzzles and problems. Pentominoes were formally defined by American professor Solomon W. Golomb starting in 1953 and later in his 1965 book Polyominoes: Puzzles, Patterns, Problems, and Packings. Golomb coined the term "pentomino" from the Ancient Greek πέντε / pénte, "five", and the -omino of domino, fancifully interpreting the "d-" of "domino" as if it were a form of the Greek prefix "di-" (two). Golomb named the 12 free pentominoes after letters of the Latin alphabet that they resemble.Ordinarily, the pentomino obtained by reflecting or rotating a pentomino does not count as a different pentomino. The F, L, N, P, Y, and Z pentominoes are chiral; adding their reflections (F', J, N', Q, Y', S) brings the number of one-sided pentominoes to 18. Pentominoes I, T, U, V, W, and X, remain the same when reflected. This matters in some video games in which the pieces may not be reflected, such as Tetris imitations and Rampart.Each of the twelve pentominoes can tile the plane. Each chiral pentomino can tile the plane without reflecting it.John Horton Conway proposed an alternate labeling scheme for pentominoes, using O instead of I, Q instead of L, R instead of F, and S instead of N. The resemblance to the letters is more strained, especially for the O pentomino, but this scheme has the advantage of using 12 consecutive letters of the alphabet. It is used by convention in discussing Conway's Game of Life, where, for example, one speaks of the R-pentomino instead of the F-pentomino.".
- Pentomino thumbnail Pentomino_Naming_Conventions.svg?width=300.
- Pentomino wikiPageExternalLink Pentamino.aspx.
- Pentomino wikiPageExternalLink pentomino-solver.
- Pentomino wikiPageExternalLink polycube-solver.
- Pentomino wikiPageExternalLink Pentomino.
- Pentomino wikiPageExternalLink chasingvermeer.
- Pentomino wikiPageExternalLink s?appid=043c91e0-9cec-41d4-a409-d8843bbf3387.
- Pentomino wikiPageID "23712".
- Pentomino wikiPageRevisionID "606799997".
- Pentomino hasPhotoCollection Pentomino.
- Pentomino subject Category:Mathematical_games.
- Pentomino subject Category:Polyforms.
- Pentomino type Abstraction100002137.
- Pentomino type Contest107456188.
- Pentomino type Event100029378.
- Pentomino type Game100456199.
- Pentomino type MathematicalGames.
- Pentomino type PsychologicalFeature100023100.
- Pentomino type SocialEvent107288639.
- Pentomino type YagoPermanentlyLocatedEntity.
- Pentomino comment "A pentomino is a plane geometric figure formed by joining five equal squares edge to edge. It is a polyomino with five cells. There are twelve pentominoes, not counting rotations and reflections as distinct. They are used chiefly in recreational mathematics for puzzles and problems. Pentominoes were formally defined by American professor Solomon W. Golomb starting in 1953 and later in his 1965 book Polyominoes: Puzzles, Patterns, Problems, and Packings.".
- Pentomino label "Pentamino".
- Pentomino label "Pentaminó".
- Pentomino label "Pentomino".
- Pentomino label "Pentomino".
- Pentomino label "Pentomino".
- Pentomino label "Pentomino".
- Pentomino label "Pentominó".
- Pentomino label "Пентамино".
- Pentomino label "ペントミノ".
- Pentomino label "五格骨牌".
- Pentomino sameAs Pentomino.
- Pentomino sameAs Pentomino.
- Pentomino sameAs Pentominó.
- Pentomino sameAs Pentamino.
- Pentomino sameAs Pentomino.
- Pentomino sameAs Pentamino.
- Pentomino sameAs ペントミノ.
- Pentomino sameAs 펜토미노.
- Pentomino sameAs Pentomino.
- Pentomino sameAs Pentaminó.
- Pentomino sameAs m.05xkv.
- Pentomino sameAs Q247406.
- Pentomino sameAs Q247406.
- Pentomino sameAs Pentomino.
- Pentomino wasDerivedFrom Pentomino?oldid=606799997.
- Pentomino depiction Pentomino_Naming_Conventions.svg.
- Pentomino isPrimaryTopicOf Pentomino.