Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Perfect_group> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Perfect_group abstract "In mathematics, more specifically in the area of modern algebra known as group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no nontrivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that G(1) = G (the commutator subgroup equals the group), or equivalently one such that Gab = {1} (its abelianization is trivial).".
- Perfect_group wikiPageExternalLink ?id=rnSE3aoNVY0C.
- Perfect_group wikiPageExternalLink purl?GDZPPN002173409.
- Perfect_group wikiPageID "585271".
- Perfect_group wikiPageRevisionID "560338435".
- Perfect_group hasPhotoCollection Perfect_group.
- Perfect_group title "Grün's lemma".
- Perfect_group title "Perfect Group".
- Perfect_group urlname "GruensLemma".
- Perfect_group urlname "PerfectGroup".
- Perfect_group subject Category:Group_theory.
- Perfect_group subject Category:Lemmas.
- Perfect_group subject Category:Properties_of_groups.
- Perfect_group type Abstraction100002137.
- Perfect_group type Communication100033020.
- Perfect_group type Lemma106751833.
- Perfect_group type Lemmas.
- Perfect_group type Message106598915.
- Perfect_group type Possession100032613.
- Perfect_group type PropertiesOfGroups.
- Perfect_group type Property113244109.
- Perfect_group type Proposition106750804.
- Perfect_group type Relation100031921.
- Perfect_group type Statement106722453.
- Perfect_group comment "In mathematics, more specifically in the area of modern algebra known as group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no nontrivial abelian quotients (equivalently, its abelianization, which is the universal abelian quotient, is trivial). In symbols, a perfect group is one such that G(1) = G (the commutator subgroup equals the group), or equivalently one such that Gab = {1} (its abelianization is trivial).".
- Perfect_group label "Groupe parfait".
- Perfect_group label "Grupa doskonała".
- Perfect_group label "Perfect group".
- Perfect_group label "Perfekte Gruppe".
- Perfect_group label "完滿群".
- Perfect_group sameAs Perfekte_Gruppe.
- Perfect_group sameAs Groupe_parfait.
- Perfect_group sameAs Grupa_doskonała.
- Perfect_group sameAs m.025tm_y.
- Perfect_group sameAs Q1571290.
- Perfect_group sameAs Q1571290.
- Perfect_group sameAs Perfect_group.
- Perfect_group wasDerivedFrom Perfect_group?oldid=560338435.
- Perfect_group isPrimaryTopicOf Perfect_group.