Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Permutation_automaton> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- Permutation_automaton abstract "In automata theory, a permutation automaton, or pure-group automaton, is a deterministic finite automaton such that each input symbol permutes the set of states.Formally, a deterministic finite automaton A may be defined by the tuple (Q, Σ, δ, q0, F),where Q is the set of states of the automaton, Σ is the set of input symbols, δ is the transition function that takes a state q and an input symbol x to a new state δ(q,x), q0 is the initial state of the automaton, and F is the set of accepting states (also: final states) of the automaton. A is a permutation automaton if and only if, for every two distinct states qi and qj in Q and every input symbol x in Σ, δ(qi,x) ≠ δ(qj,x).A formal language is p-regular (also: a pure-group language) if it is accepted by a permutation automaton. For example, the set of strings of even length forms a p-regular language: it may be accepted by a permutation automaton with two states in which every transition replaces one state by the other.".
- Permutation_automaton wikiPageID "1238920".
- Permutation_automaton wikiPageRevisionID "595614137".
- Permutation_automaton hasPhotoCollection Permutation_automaton.
- Permutation_automaton subject Category:Automata_theory.
- Permutation_automaton subject Category:Formal_languages.
- Permutation_automaton subject Category:Permutations.
- Permutation_automaton type Abstraction100002137.
- Permutation_automaton type Change107296428.
- Permutation_automaton type Communication100033020.
- Permutation_automaton type Event100029378.
- Permutation_automaton type FormalLanguages.
- Permutation_automaton type Happening107283608.
- Permutation_automaton type Language106282651.
- Permutation_automaton type Permutations.
- Permutation_automaton type PsychologicalFeature100023100.
- Permutation_automaton type Substitution107443761.
- Permutation_automaton type Variation107337390.
- Permutation_automaton type YagoPermanentlyLocatedEntity.
- Permutation_automaton comment "In automata theory, a permutation automaton, or pure-group automaton, is a deterministic finite automaton such that each input symbol permutes the set of states.Formally, a deterministic finite automaton A may be defined by the tuple (Q, Σ, δ, q0, F),where Q is the set of states of the automaton, Σ is the set of input symbols, δ is the transition function that takes a state q and an input symbol x to a new state δ(q,x), q0 is the initial state of the automaton, and F is the set of accepting states (also: final states) of the automaton. ".
- Permutation_automaton label "Permutation automaton".
- Permutation_automaton sameAs m.04l6cc.
- Permutation_automaton sameAs Q7169368.
- Permutation_automaton sameAs Q7169368.
- Permutation_automaton sameAs Permutation_automaton.
- Permutation_automaton wasDerivedFrom Permutation_automaton?oldid=595614137.
- Permutation_automaton isPrimaryTopicOf Permutation_automaton.