Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Perron–Frobenius_theorem> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Perron–Frobenius_theorem abstract "In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector has strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory (ergodicity of Markov chains); to the theory of dynamical systems (subshifts of finite type); to economics (Okishio's theorem, Leontief's input-output model); to demography (Leslie population age distribution model), to Internet search engines and even ranking of football teams".
- Perron–Frobenius_theorem wikiPageID "1540333".
- Perron–Frobenius_theorem wikiPageRevisionID "599956837".
- Perron–Frobenius_theorem authorlink "Georg Frobenius".
- Perron–Frobenius_theorem authorlink "Oskar Perron".
- Perron–Frobenius_theorem first "D.A.".
- Perron–Frobenius_theorem first "Georg".
- Perron–Frobenius_theorem first "Oskar".
- Perron–Frobenius_theorem id "P/p072350".
- Perron–Frobenius_theorem last "Frobenius".
- Perron–Frobenius_theorem last "Perron".
- Perron–Frobenius_theorem last "Suprunenko".
- Perron–Frobenius_theorem year "1907".
- Perron–Frobenius_theorem year "1912".
- Perron–Frobenius_theorem subject Category:Markov_processes.
- Perron–Frobenius_theorem subject Category:Mathematical_and_quantitative_methods_(economics).
- Perron–Frobenius_theorem subject Category:Matrix_theory.
- Perron–Frobenius_theorem subject Category:Theorems_in_linear_algebra.
- Perron–Frobenius_theorem comment "In linear algebra, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique largest real eigenvalue and that the corresponding eigenvector has strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices.".
- Perron–Frobenius_theorem label "Perron–Frobenius theorem".
- Perron–Frobenius_theorem label "Satz von Perron-Frobenius".
- Perron–Frobenius_theorem label "Teorema de Perron-Frobenius".
- Perron–Frobenius_theorem label "Teorema di Perron-Frobenius".
- Perron–Frobenius_theorem label "Théorème de Perron-Frobenius".
- Perron–Frobenius_theorem label "Теорема Фробениуса — Перрона".
- Perron–Frobenius_theorem label "مبرهنة برون فروبانيوس".
- Perron–Frobenius_theorem label "ペロン=フロベニウスの定理".
- Perron–Frobenius_theorem sameAs Perron%E2%80%93Frobenius_theorem.
- Perron–Frobenius_theorem sameAs Satz_von_Perron-Frobenius.
- Perron–Frobenius_theorem sameAs Théorème_de_Perron-Frobenius.
- Perron–Frobenius_theorem sameAs Teorema_di_Perron-Frobenius.
- Perron–Frobenius_theorem sameAs ペロン=フロベニウスの定理.
- Perron–Frobenius_theorem sameAs Teorema_de_Perron-Frobenius.
- Perron–Frobenius_theorem sameAs Q1564541.
- Perron–Frobenius_theorem sameAs Q1564541.
- Perron–Frobenius_theorem wasDerivedFrom Perron–Frobenius_theorem?oldid=599956837.