Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Piecewise_linear_manifold> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Piecewise_linear_manifold abstract "In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation.An isomorphism of PL manifolds is called a PL homeomorphism.".
- Piecewise_linear_manifold thumbnail PDIFF.svg?width=300.
- Piecewise_linear_manifold wikiPageExternalLink t093230.htm.
- Piecewise_linear_manifold wikiPageID "2174184".
- Piecewise_linear_manifold wikiPageRevisionID "543861996".
- Piecewise_linear_manifold hasPhotoCollection Piecewise_linear_manifold.
- Piecewise_linear_manifold subject Category:Geometric_topology.
- Piecewise_linear_manifold subject Category:Manifolds.
- Piecewise_linear_manifold subject Category:Structures_on_manifolds.
- Piecewise_linear_manifold type Artifact100021939.
- Piecewise_linear_manifold type Conduit103089014.
- Piecewise_linear_manifold type Manifold103717750.
- Piecewise_linear_manifold type Manifolds.
- Piecewise_linear_manifold type Object100002684.
- Piecewise_linear_manifold type Passage103895293.
- Piecewise_linear_manifold type PhysicalEntity100001930.
- Piecewise_linear_manifold type Pipe103944672.
- Piecewise_linear_manifold type Structure104341686.
- Piecewise_linear_manifold type StructuresOnManifolds.
- Piecewise_linear_manifold type Tube104493505.
- Piecewise_linear_manifold type Way104564698.
- Piecewise_linear_manifold type Whole100003553.
- Piecewise_linear_manifold type YagoGeoEntity.
- Piecewise_linear_manifold type YagoPermanentlyLocatedEntity.
- Piecewise_linear_manifold comment "In mathematics, a piecewise linear (PL) manifold is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation.An isomorphism of PL manifolds is called a PL homeomorphism.".
- Piecewise_linear_manifold label "Piecewise linear manifold".
- Piecewise_linear_manifold sameAs m.025s5jh.
- Piecewise_linear_manifold sameAs Q7191425.
- Piecewise_linear_manifold sameAs Q7191425.
- Piecewise_linear_manifold sameAs Piecewise_linear_manifold.
- Piecewise_linear_manifold wasDerivedFrom Piecewise_linear_manifold?oldid=543861996.
- Piecewise_linear_manifold depiction PDIFF.svg.
- Piecewise_linear_manifold isPrimaryTopicOf Piecewise_linear_manifold.