Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Poisson_binomial_distribution> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Poisson_binomial_distribution abstract "In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.In other words, it is the probability distribution of thenumber of successes in a sequence of n independent yes/no experiments with success probabilities . The ordinary binomial distribution is a special case of the Poisson binomial distribution, when all success probabilities are the same, that is .".
- Poisson_binomial_distribution wikiPageID "28647736".
- Poisson_binomial_distribution wikiPageRevisionID "590053785".
- Poisson_binomial_distribution hasPhotoCollection Poisson_binomial_distribution.
- Poisson_binomial_distribution name "Poisson binomial".
- Poisson_binomial_distribution parameters "— success probabilities for each of the n trials".
- Poisson_binomial_distribution support "k ∈ { 0, …, n }".
- Poisson_binomial_distribution type "mass".
- Poisson_binomial_distribution subject Category:Discrete_distributions.
- Poisson_binomial_distribution subject Category:Factorial_and_binomial_topics.
- Poisson_binomial_distribution subject Category:Probability_distributions.
- Poisson_binomial_distribution type Abstraction100002137.
- Poisson_binomial_distribution type Arrangement105726596.
- Poisson_binomial_distribution type Cognition100023271.
- Poisson_binomial_distribution type DiscreteDistributions.
- Poisson_binomial_distribution type Distribution105729036.
- Poisson_binomial_distribution type PsychologicalFeature100023100.
- Poisson_binomial_distribution type Structure105726345.
- Poisson_binomial_distribution comment "In probability theory and statistics, the Poisson binomial distribution is the discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily identically distributed. The concept is named after Siméon Denis Poisson.In other words, it is the probability distribution of thenumber of successes in a sequence of n independent yes/no experiments with success probabilities .".
- Poisson_binomial_distribution label "Loi Poisson binomiale".
- Poisson_binomial_distribution label "Poisson binomial distribution".
- Poisson_binomial_distribution label "Verallgemeinerte Binomialverteilung".
- Poisson_binomial_distribution label "ポアソン二項分布".
- Poisson_binomial_distribution sameAs Verallgemeinerte_Binomialverteilung.
- Poisson_binomial_distribution sameAs Loi_Poisson_binomiale.
- Poisson_binomial_distribution sameAs ポアソン二項分布.
- Poisson_binomial_distribution sameAs m.0czdync.
- Poisson_binomial_distribution sameAs Q3258231.
- Poisson_binomial_distribution sameAs Q3258231.
- Poisson_binomial_distribution sameAs Poisson_binomial_distribution.
- Poisson_binomial_distribution wasDerivedFrom Poisson_binomial_distribution?oldid=590053785.
- Poisson_binomial_distribution isPrimaryTopicOf Poisson_binomial_distribution.