Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Poisson_superalgebra> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Poisson_superalgebra abstract "In mathematics, a Poisson superalgebra is a Z2-graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra A with a Lie superbracketsuch that (A, [·,·]) is a Lie superalgebra and the operatoris a superderivation of A:A supercommutative Poisson algebra is one for which the (associative) product is supercommutative.This is one possible way of "super"izing the Poisson algebra. This gives the classical dynamics of fermion fields and classical spin-1/2 particles. The other is to define an antibracket algebra instead. This is used in the BRST and Batalin-Vilkovisky formalism.".
- Poisson_superalgebra wikiPageID "882793".
- Poisson_superalgebra wikiPageRevisionID "606716150".
- Poisson_superalgebra author Yvette_Kosmann-Schwarzbach.
- Poisson_superalgebra hasPhotoCollection Poisson_superalgebra.
- Poisson_superalgebra id "p/p110170".
- Poisson_superalgebra title "Poisson algebra".
- Poisson_superalgebra subject Category:Super_linear_algebra.
- Poisson_superalgebra subject Category:Symplectic_geometry.
- Poisson_superalgebra comment "In mathematics, a Poisson superalgebra is a Z2-graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra A with a Lie superbracketsuch that (A, [·,·]) is a Lie superalgebra and the operatoris a superderivation of A:A supercommutative Poisson algebra is one for which the (associative) product is supercommutative.This is one possible way of "super"izing the Poisson algebra.".
- Poisson_superalgebra label "Poisson superalgebra".
- Poisson_superalgebra sameAs m.03lhm3.
- Poisson_superalgebra sameAs Q7208507.
- Poisson_superalgebra sameAs Q7208507.
- Poisson_superalgebra wasDerivedFrom Poisson_superalgebra?oldid=606716150.
- Poisson_superalgebra isPrimaryTopicOf Poisson_superalgebra.