Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Postnikov_system> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Postnikov_system abstract "In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of constructing a topological space from its homotopy groups. Postnikov systems were introduced by, and named after, Mikhail Postnikov.The Postnikov system of a path-connected space X is a tower of spaces …→ Xn →…→ X1→ X0 with the following properties: each map Xn→Xn−1 is a fibration; πk(Xn) = πk(X) for k ≤ n; πk(Xn) = 0 for k > n.Every path-connected space has such a Postnikov system, and it is unique up to homotopy. The space X can be reconstructed from the Postnikov system as its inverse limit: X = limn Xn. By the long exact sequence for the fibration Xn→Xn−1, the fiber (call it Kn) has at most one non-trivial homotopy group, which will be in degree n; it is thus an Eilenberg–Mac Lane space of type K(πn(X), n). The Postnikov system can be thought of as a way of constructing X out of Eilenberg–Mac Lane spaces.".
- Postnikov_system wikiPageExternalLink ATpage.html.
- Postnikov_system wikiPageID "15708202".
- Postnikov_system wikiPageRevisionID "584281048".
- Postnikov_system hasPhotoCollection Postnikov_system.
- Postnikov_system subject Category:Homotopy_theory.
- Postnikov_system comment "In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of constructing a topological space from its homotopy groups.".
- Postnikov_system label "Postnikov system".
- Postnikov_system label "Tour de Postnikov".
- Postnikov_system label "波斯尼科夫塔".
- Postnikov_system sameAs Tour_de_Postnikov.
- Postnikov_system sameAs m.03nqwgf.
- Postnikov_system sameAs Q6941533.
- Postnikov_system sameAs Q6941533.
- Postnikov_system wasDerivedFrom Postnikov_system?oldid=584281048.
- Postnikov_system isPrimaryTopicOf Postnikov_system.