Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Primitive_root_modulo_n> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Primitive_root_modulo_n abstract "In modular arithmetic, a branch of number theory, a number g is a primitive root modulo n if every number coprime to n is congruent to a power of g modulo n. In other words, g is a generator of the multiplicative group of integers modulo n. That is, for every integer a coprime to n, there is an integer k such that gk ≡ a (mod n). Such k is called the index or discrete logarithm of a to the base g modulo n.Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist. In fact, the Disquisitiones contains two proofs: the one in Article 54 is a nonconstructive existence proof, while the other in Article 55 is constructive.".
- Primitive_root_modulo_n wikiPageExternalLink primitive.html.
- Primitive_root_modulo_n wikiPageExternalLink quadratic4.html.
- Primitive_root_modulo_n wikiPageID "186864".
- Primitive_root_modulo_n wikiPageRevisionID "605198413".
- Primitive_root_modulo_n hasPhotoCollection Primitive_root_modulo_n.
- Primitive_root_modulo_n id "PrimitiveRoot".
- Primitive_root_modulo_n title "Primitive Root".
- Primitive_root_modulo_n subject Category:Modular_arithmetic.
- Primitive_root_modulo_n comment "In modular arithmetic, a branch of number theory, a number g is a primitive root modulo n if every number coprime to n is congruent to a power of g modulo n. In other words, g is a generator of the multiplicative group of integers modulo n. That is, for every integer a coprime to n, there is an integer k such that gk ≡ a (mod n).".
- Primitive_root_modulo_n label "Generatore (teoria dei numeri)".
- Primitive_root_modulo_n label "Pierwiastek pierwotny".
- Primitive_root_modulo_n label "Primitive root modulo n".
- Primitive_root_modulo_n label "Primitivwurzel".
- Primitive_root_modulo_n label "Racine primitive modulo n".
- Primitive_root_modulo_n label "Raíz primitiva módulo n".
- Primitive_root_modulo_n label "Первообразный корень (теория чисел)".
- Primitive_root_modulo_n label "原根".
- Primitive_root_modulo_n sameAs Primitivwurzel.
- Primitive_root_modulo_n sameAs Raíz_primitiva_módulo_n.
- Primitive_root_modulo_n sameAs Racine_primitive_modulo_n.
- Primitive_root_modulo_n sameAs Generatore_(teoria_dei_numeri).
- Primitive_root_modulo_n sameAs Pierwiastek_pierwotny.
- Primitive_root_modulo_n sameAs m.019k7t.
- Primitive_root_modulo_n sameAs Q948010.
- Primitive_root_modulo_n sameAs Q948010.
- Primitive_root_modulo_n wasDerivedFrom Primitive_root_modulo_n?oldid=605198413.
- Primitive_root_modulo_n isPrimaryTopicOf Primitive_root_modulo_n.