Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Product_integral> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Product_integral abstract "The expression "product integral" is used informally for referring to any product-based counterpart of the usual sum-based integral of classical calculus. The first product integral was developed by the mathematician Vito Volterra in 1887 to solve systems of linear differential equations. (Please see "Type II" below.) Other examples of product integrals are the geometric integral ("Type I" below), the bigeometric integral, and some other integrals of non-Newtonian calculus.Product integrals have found use in areas from epidemiology (the Kaplan–Meier estimator) to stochastic population dynamics using multiplication integrals (multigrals), analysis and quantum mechanics. The geometric integral, together with the geometric derivative, is useful in biomedical image analysis.This article adopts the "product" notation for product integration instead of the "integral" (usually modified by a superimposed "times" symbol or letter P) favoured by Volterra and others. An arbitrary classification of types is also adopted to impose some order in the field.".
- Product_integral wikiPageExternalLink lax.html.
- Product_integral wikiPageExternalLink S0022247X07003824.
- Product_integral wikiPageExternalLink sect1-0.htm.
- Product_integral wikiPageExternalLink Product_integral.
- Product_integral wikiPageExternalLink cdde2006.pdf.
- Product_integral wikiPageExternalLink necas.pdf.
- Product_integral wikiPageExternalLink prod_int_1.pdf.
- Product_integral wikiPageExternalLink inequality2.pdf.
- Product_integral wikiPageExternalLink multigrals2000&date=2009-10-26+02:21:00.
- Product_integral wikiPageID "11602384".
- Product_integral wikiPageRevisionID "594722184".
- Product_integral hasPhotoCollection Product_integral.
- Product_integral subject Category:Integrals.
- Product_integral subject Category:Multiplication.
- Product_integral subject Category:Non-Newtonian_calculus.
- Product_integral type Abstraction100002137.
- Product_integral type Calculation105802185.
- Product_integral type Cognition100023271.
- Product_integral type HigherCognitiveProcess105770664.
- Product_integral type Integral106015505.
- Product_integral type Integrals.
- Product_integral type ProblemSolving105796750.
- Product_integral type Process105701363.
- Product_integral type PsychologicalFeature100023100.
- Product_integral type Thinking105770926.
- Product_integral comment "The expression "product integral" is used informally for referring to any product-based counterpart of the usual sum-based integral of classical calculus. The first product integral was developed by the mathematician Vito Volterra in 1887 to solve systems of linear differential equations.".
- Product_integral label "Integral produto".
- Product_integral label "Product integral".
- Product_integral sameAs Integral_produto.
- Product_integral sameAs m.02rl5s2.
- Product_integral sameAs Q4891200.
- Product_integral sameAs Q4891200.
- Product_integral sameAs Product_integral.
- Product_integral wasDerivedFrom Product_integral?oldid=594722184.
- Product_integral isPrimaryTopicOf Product_integral.