Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Pseudoholomorphic_curve> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Pseudoholomorphic_curve abstract "In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or J-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory.".
- Pseudoholomorphic_curve wikiPageExternalLink what-is.pdf.
- Pseudoholomorphic_curve wikiPageID "2294542".
- Pseudoholomorphic_curve wikiPageRevisionID "599465502".
- Pseudoholomorphic_curve hasPhotoCollection Pseudoholomorphic_curve.
- Pseudoholomorphic_curve subject Category:Algebraic_geometry.
- Pseudoholomorphic_curve subject Category:Complex_manifolds.
- Pseudoholomorphic_curve subject Category:Curves.
- Pseudoholomorphic_curve subject Category:String_theory.
- Pseudoholomorphic_curve subject Category:Symplectic_topology.
- Pseudoholomorphic_curve type Artifact100021939.
- Pseudoholomorphic_curve type ComplexManifolds.
- Pseudoholomorphic_curve type Conduit103089014.
- Pseudoholomorphic_curve type Manifold103717750.
- Pseudoholomorphic_curve type Object100002684.
- Pseudoholomorphic_curve type Passage103895293.
- Pseudoholomorphic_curve type PhysicalEntity100001930.
- Pseudoholomorphic_curve type Pipe103944672.
- Pseudoholomorphic_curve type Tube104493505.
- Pseudoholomorphic_curve type Way104564698.
- Pseudoholomorphic_curve type Whole100003553.
- Pseudoholomorphic_curve type YagoGeoEntity.
- Pseudoholomorphic_curve type YagoPermanentlyLocatedEntity.
- Pseudoholomorphic_curve comment "In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or J-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory.".
- Pseudoholomorphic_curve label "Courbe pseudoholomorphe".
- Pseudoholomorphic_curve label "Pseudoholomorphe Kurve".
- Pseudoholomorphic_curve label "Pseudoholomorphic curve".
- Pseudoholomorphic_curve sameAs Pseudoholomorphe_Kurve.
- Pseudoholomorphic_curve sameAs Courbe_pseudoholomorphe.
- Pseudoholomorphic_curve sameAs m.071lk5.
- Pseudoholomorphic_curve sameAs Q2115749.
- Pseudoholomorphic_curve sameAs Q2115749.
- Pseudoholomorphic_curve sameAs Pseudoholomorphic_curve.
- Pseudoholomorphic_curve wasDerivedFrom Pseudoholomorphic_curve?oldid=599465502.
- Pseudoholomorphic_curve isPrimaryTopicOf Pseudoholomorphic_curve.