Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Pumping_lemma> ?p ?o. }
Showing items 1 to 43 of
43
with 100 items per page.
- Pumping_lemma abstract "In the theory of formal languages in computability theory, a pumping lemma or pumping argument states that, for a particular language to be a member of a language class, any sufficiently long string in the language contains a section, or sections, that can be removed, or repeated any number of times, with the resulting string remaining in that language. The proofs of these lemmas typically require counting arguments such as the pigeonhole principle.The two most important examples are the pumping lemma for regular languages (cf. picture) and the pumping lemma for context-free languages. Ogden's lemma is a second, stronger pumping lemma for context-free languages. Pumping lemmas are known also for regular tree languages, and for indexed languages.These lemmas can be used to determine if a particular language is not in a given language class. However, they cannot be used to determine if a language is in a given class, since satisfying the pumping lemma is a necessary, but not sufficient, condition for class membership.".
- Pumping_lemma thumbnail Pumping-Lemma.png?width=300.
- Pumping_lemma wikiPageID "24449".
- Pumping_lemma wikiPageRevisionID "597173217".
- Pumping_lemma hasPhotoCollection Pumping_lemma.
- Pumping_lemma subject Category:Formal_languages.
- Pumping_lemma subject Category:Lemmas.
- Pumping_lemma type Abstraction100002137.
- Pumping_lemma type Communication100033020.
- Pumping_lemma type FormalLanguages.
- Pumping_lemma type Language106282651.
- Pumping_lemma type Lemma106751833.
- Pumping_lemma type Lemmas.
- Pumping_lemma type Message106598915.
- Pumping_lemma type Proposition106750804.
- Pumping_lemma type Statement106722453.
- Pumping_lemma comment "In the theory of formal languages in computability theory, a pumping lemma or pumping argument states that, for a particular language to be a member of a language class, any sufficiently long string in the language contains a section, or sections, that can be removed, or repeated any number of times, with the resulting string remaining in that language.".
- Pumping_lemma label "Lema del bombeo".
- Pumping_lemma label "Lema do bombeamento".
- Pumping_lemma label "Lemme de l'étoile".
- Pumping_lemma label "Pompstelling".
- Pumping_lemma label "Pumping lemma".
- Pumping_lemma label "Pumping lemma".
- Pumping_lemma label "Pumping-Lemma".
- Pumping_lemma label "Лемма о разрастании".
- Pumping_lemma label "反復補題".
- Pumping_lemma label "泵引理".
- Pumping_lemma sameAs Lemma_o_vkládání.
- Pumping_lemma sameAs Pumping-Lemma.
- Pumping_lemma sameAs Lema_del_bombeo.
- Pumping_lemma sameAs Lemme_de_l'étoile.
- Pumping_lemma sameAs Pumping_lemma.
- Pumping_lemma sameAs 反復補題.
- Pumping_lemma sameAs 펌핑_보조정리.
- Pumping_lemma sameAs Pompstelling.
- Pumping_lemma sameAs Lema_do_bombeamento.
- Pumping_lemma sameAs m.063fk.
- Pumping_lemma sameAs Q1059648.
- Pumping_lemma sameAs Q1059648.
- Pumping_lemma sameAs Pumping_lemma.
- Pumping_lemma wasDerivedFrom Pumping_lemma?oldid=597173217.
- Pumping_lemma depiction Pumping-Lemma.png.
- Pumping_lemma isPrimaryTopicOf Pumping_lemma.