Matches in DBpedia 2014 for { <http://dbpedia.org/resource/QR_decomposition> ?p ?o. }
Showing items 1 to 50 of
50
with 100 items per page.
- QR_decomposition abstract "In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm, the QR algorithm.If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More specifically, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n. The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.".
- QR_decomposition wikiPageExternalLink index.html?pg=102.
- QR_decomposition wikiPageExternalLink QRDecomposition.
- QR_decomposition wikiPageExternalLink group__QR__Module.html.
- QR_decomposition wikiPageExternalLink into.
- QR_decomposition wikiPageExternalLink node39.html.
- QR_decomposition wikiPageExternalLink www.alglib.net.
- QR_decomposition wikiPageExternalLink matrix-calculator.
- QR_decomposition wikiPageID "305223".
- QR_decomposition wikiPageRevisionID "605162834".
- QR_decomposition hasPhotoCollection QR_decomposition.
- QR_decomposition subject Category:Matrix_decompositions.
- QR_decomposition subject Category:Numerical_linear_algebra.
- QR_decomposition type Abstraction100002137.
- QR_decomposition type Algebra106012726.
- QR_decomposition type Cognition100023271.
- QR_decomposition type Content105809192.
- QR_decomposition type Decomposition106013471.
- QR_decomposition type Discipline105996646.
- QR_decomposition type KnowledgeDomain105999266.
- QR_decomposition type Mathematics106000644.
- QR_decomposition type MatrixDecompositions.
- QR_decomposition type PsychologicalFeature100023100.
- QR_decomposition type PureMathematics106003682.
- QR_decomposition type Science105999797.
- QR_decomposition type VectorAlgebra106013298.
- QR_decomposition comment "In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm, the QR algorithm.If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A.".
- QR_decomposition label "Decomposizione QR".
- QR_decomposition label "Décomposition QR".
- QR_decomposition label "Factorización QR".
- QR_decomposition label "QR decomposition".
- QR_decomposition label "QR-Zerlegung".
- QR_decomposition label "QR-decompositie".
- QR_decomposition label "QR-разложение".
- QR_decomposition label "QR分解".
- QR_decomposition label "QR分解".
- QR_decomposition sameAs QR_rozklad.
- QR_decomposition sameAs QR-Zerlegung.
- QR_decomposition sameAs Factorización_QR.
- QR_decomposition sameAs Décomposition_QR.
- QR_decomposition sameAs Decomposizione_QR.
- QR_decomposition sameAs QR分解.
- QR_decomposition sameAs QR_분해.
- QR_decomposition sameAs QR-decompositie.
- QR_decomposition sameAs m.01sf3x.
- QR_decomposition sameAs Q653242.
- QR_decomposition sameAs Q653242.
- QR_decomposition sameAs QR_decomposition.
- QR_decomposition wasDerivedFrom QR_decomposition?oldid=605162834.
- QR_decomposition isPrimaryTopicOf QR_decomposition.