Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Quadratic_sieve> ?p ?o. }
Showing items 1 to 45 of
45
with 100 items per page.
- Quadratic_sieve abstract "The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties. It was invented by Carl Pomerance in 1981 as an improvement to Schroeppel's linear sieve.".
- Quadratic_sieve wikiPageExternalLink home.
- Quadratic_sieve wikiPageExternalLink mpqs.
- Quadratic_sieve wikiPageExternalLink arielqs.
- Quadratic_sieve wikiPageExternalLink msieve.
- Quadratic_sieve wikiPageExternalLink ECM.HTM.
- Quadratic_sieve wikiPageExternalLink cn.
- Quadratic_sieve wikiPageExternalLink QS.
- Quadratic_sieve wikiPageExternalLink quadsieve.pdf.
- Quadratic_sieve wikiPageID "582340".
- Quadratic_sieve wikiPageRevisionID "581485231".
- Quadratic_sieve hasPhotoCollection Quadratic_sieve.
- Quadratic_sieve subject Category:Integer_factorization_algorithms.
- Quadratic_sieve type Abstraction100002137.
- Quadratic_sieve type Act100030358.
- Quadratic_sieve type Activity100407535.
- Quadratic_sieve type Algorithm105847438.
- Quadratic_sieve type Event100029378.
- Quadratic_sieve type IntegerFactorizationAlgorithms.
- Quadratic_sieve type Procedure101023820.
- Quadratic_sieve type PsychologicalFeature100023100.
- Quadratic_sieve type Rule105846932.
- Quadratic_sieve type YagoPermanentlyLocatedEntity.
- Quadratic_sieve comment "The quadratic sieve algorithm (QS) is an integer factorization algorithm and, in practice, the second fastest method known (after the general number field sieve). It is still the fastest for integers under 100 decimal digits or so, and is considerably simpler than the number field sieve. It is a general-purpose factorization algorithm, meaning that its running time depends solely on the size of the integer to be factored, and not on special structure or properties.".
- Quadratic_sieve label "Criba cuadrática".
- Quadratic_sieve label "Crible quadratique".
- Quadratic_sieve label "Crivello quadratico".
- Quadratic_sieve label "Kwadratische zeef".
- Quadratic_sieve label "Quadratic sieve".
- Quadratic_sieve label "Quadratisches Sieb".
- Quadratic_sieve label "Sito kwadratowe".
- Quadratic_sieve label "Метод квадратичного решета".
- Quadratic_sieve sameAs Quadratisches_Sieb.
- Quadratic_sieve sameAs Criba_cuadrática.
- Quadratic_sieve sameAs Crible_quadratique.
- Quadratic_sieve sameAs Crivello_quadratico.
- Quadratic_sieve sameAs 이차_체.
- Quadratic_sieve sameAs Kwadratische_zeef.
- Quadratic_sieve sameAs Sito_kwadratowe.
- Quadratic_sieve sameAs m.02s9bn.
- Quadratic_sieve sameAs Q1151850.
- Quadratic_sieve sameAs Q1151850.
- Quadratic_sieve sameAs Quadratic_sieve.
- Quadratic_sieve wasDerivedFrom Quadratic_sieve?oldid=581485231.
- Quadratic_sieve isPrimaryTopicOf Quadratic_sieve.