Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Quasitriangular_Hopf_algebra> ?p ?o. }
Showing items 1 to 24 of
24
with 100 items per page.
- Quasitriangular_Hopf_algebra abstract "In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such thatfor all , where is the coproduct on H, and the linear map is given by ,,,where , , and , where , , and , are algebra morphisms determined byR is called the R-matrix.As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang-Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links). Also as a consequence of the properties of quasitriangularity, moreover , , and . One may further show that theantipode S must be a linear isomorphism, and thus S^2 is an automorphism. In fact, S^2 is given by conjugating by an invertible element: where (cf. Ribbon Hopf algebras).It is possible to construct a quasitriangular Hopf algebra from a Hopf algebra and its dual, using the Drinfeld quantum double construction.".
- Quasitriangular_Hopf_algebra wikiPageID "3727020".
- Quasitriangular_Hopf_algebra wikiPageRevisionID "560488073".
- Quasitriangular_Hopf_algebra hasPhotoCollection Quasitriangular_Hopf_algebra.
- Quasitriangular_Hopf_algebra subject Category:Hopf_algebras.
- Quasitriangular_Hopf_algebra type Abstraction100002137.
- Quasitriangular_Hopf_algebra type Algebra106012726.
- Quasitriangular_Hopf_algebra type Cognition100023271.
- Quasitriangular_Hopf_algebra type Content105809192.
- Quasitriangular_Hopf_algebra type Discipline105996646.
- Quasitriangular_Hopf_algebra type HopfAlgebras.
- Quasitriangular_Hopf_algebra type KnowledgeDomain105999266.
- Quasitriangular_Hopf_algebra type Mathematics106000644.
- Quasitriangular_Hopf_algebra type PsychologicalFeature100023100.
- Quasitriangular_Hopf_algebra type PureMathematics106003682.
- Quasitriangular_Hopf_algebra type Science105999797.
- Quasitriangular_Hopf_algebra comment "In mathematics, a Hopf algebra, H, is quasitriangular if there exists an invertible element, R, of such thatfor all , where is the coproduct on H, and the linear map is given by ,,,where , , and , where , , and , are algebra morphisms determined byR is called the R-matrix.As a consequence of the properties of quasitriangularity, the R-matrix, R, is a solution of the Yang-Baxter equation (and so a module V of H can be used to determine quasi-invariants of braids, knots and links).".
- Quasitriangular_Hopf_algebra label "Quasitriangular Hopf algebra".
- Quasitriangular_Hopf_algebra sameAs m.09xk2w.
- Quasitriangular_Hopf_algebra sameAs Q7269541.
- Quasitriangular_Hopf_algebra sameAs Q7269541.
- Quasitriangular_Hopf_algebra sameAs Quasitriangular_Hopf_algebra.
- Quasitriangular_Hopf_algebra wasDerivedFrom Quasitriangular_Hopf_algebra?oldid=560488073.
- Quasitriangular_Hopf_algebra isPrimaryTopicOf Quasitriangular_Hopf_algebra.