Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Quaternion-Kähler_manifold> ?p ?o. }
Showing items 1 to 15 of
15
with 100 items per page.
- Quaternion-Kähler_manifold abstract "In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1). Although this definition includes hyperkähler manifolds, these are often excluded from the definition of a quaternion-Kähler manifold by imposing the condition that the scalar curvature is nonzero, or that the holonomy group is equal to Sp(n)·Sp(1).The definition introduced by Edmond Bonan in 1965, uses a 3-dimensional subbundle H of End(TM) of endomorphisms of the tangent bundle to a Riemannian M, that in 1976 Stefano Marchiafava and Giuliano Romani called I fibrato di Bonan. For M to be quaternion-Kähler, H should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions which act on TM preserving the metric. Simultaneously, in 1965, Edmond Bonan and Vivian Yoh Kraines constructed the parallel 4-form. It was not until 1982 that Edmond Bonan proved an outstanding result : the analogue of hard Lefschetz theorem for compact Sp(n)·Sp(1)-manifold.".
- Quaternion-Kähler_manifold wikiPageID "2640559".
- Quaternion-Kähler_manifold wikiPageRevisionID "606318515".
- Quaternion-Kähler_manifold subject Category:Manifolds.
- Quaternion-Kähler_manifold subject Category:Riemannian_geometry.
- Quaternion-Kähler_manifold subject Category:Structures_on_manifolds.
- Quaternion-Kähler_manifold comment "In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1).".
- Quaternion-Kähler_manifold label "Quaternion-Kähler manifold".
- Quaternion-Kähler_manifold label "Quaternionische Kählermannigfaltigkeit".
- Quaternion-Kähler_manifold sameAs Quaternion-K%C3%A4hler_manifold.
- Quaternion-Kähler_manifold sameAs Quaternionische_Kählermannigfaltigkeit.
- Quaternion-Kähler_manifold sameAs 사원수_켈러_다양체.
- Quaternion-Kähler_manifold sameAs Q7269561.
- Quaternion-Kähler_manifold sameAs Q7269561.
- Quaternion-Kähler_manifold wasDerivedFrom Quaternion-Kähler_manifold?oldid=606318515.