Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Reflexive_operator_algebra> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Reflexive_operator_algebra abstract "In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A. This should not be confused with a reflexive space.".
- Reflexive_operator_algebra wikiPageID "460478".
- Reflexive_operator_algebra wikiPageRevisionID "596387564".
- Reflexive_operator_algebra hasPhotoCollection Reflexive_operator_algebra.
- Reflexive_operator_algebra subject Category:Invariant_subspaces.
- Reflexive_operator_algebra subject Category:Operator_algebras.
- Reflexive_operator_algebra subject Category:Operator_theory.
- Reflexive_operator_algebra type Abstraction100002137.
- Reflexive_operator_algebra type Algebra106012726.
- Reflexive_operator_algebra type Attribute100024264.
- Reflexive_operator_algebra type Cognition100023271.
- Reflexive_operator_algebra type Content105809192.
- Reflexive_operator_algebra type Discipline105996646.
- Reflexive_operator_algebra type InvariantSubspaces.
- Reflexive_operator_algebra type KnowledgeDomain105999266.
- Reflexive_operator_algebra type MathematicalSpace108001685.
- Reflexive_operator_algebra type Mathematics106000644.
- Reflexive_operator_algebra type OperatorAlgebras.
- Reflexive_operator_algebra type PsychologicalFeature100023100.
- Reflexive_operator_algebra type PureMathematics106003682.
- Reflexive_operator_algebra type Science105999797.
- Reflexive_operator_algebra type Set107999699.
- Reflexive_operator_algebra type Space100028651.
- Reflexive_operator_algebra type Subspace108004342.
- Reflexive_operator_algebra comment "In functional analysis, a reflexive operator algebra A is an operator algebra that has enough invariant subspaces to characterize it. Formally, A is reflexive if it is equal to the algebra of bounded operators which leave invariant each subspace left invariant by every operator in A. This should not be confused with a reflexive space.".
- Reflexive_operator_algebra label "Reflexive operator algebra".
- Reflexive_operator_algebra sameAs m.02c7s8.
- Reflexive_operator_algebra sameAs Q7307359.
- Reflexive_operator_algebra sameAs Q7307359.
- Reflexive_operator_algebra sameAs Reflexive_operator_algebra.
- Reflexive_operator_algebra wasDerivedFrom Reflexive_operator_algebra?oldid=596387564.
- Reflexive_operator_algebra isPrimaryTopicOf Reflexive_operator_algebra.