Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Relevance_logic> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Relevance_logic abstract "Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. (It is generally, but not universally, called relevant logic by Australian logicians, and relevance logic by other English-speaking logicians.)Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication. This idea is not new: C. I. Lewis was led to invent modal logic, and specifically strict implication, on the grounds that classical logic grants paradoxes of material implication such as the principle that a falsehood implies any proposition. Hence "if I'm a donkey, then two and two is four" is true when translated as a material implication, yet it seems intuitively false since a true implication must tie the antecedent and consequent together by some notion of relevance. And whether or not I'm a donkey seems in no way relevant to whether two and two is four.How does relevance logic formally capture a notion of relevance? In terms of a syntactical constraint for a propositional calculus, it is necessary, but not sufficient, that premises and conclusion share atomic formulae (formulae that do not contain any logical connectives). In a predicate calculus, relevance requires sharing of variables and constants between premises and conclusion. This can be ensured (along with stronger conditions) by, e.g., placing certain restrictions on the rules of a natural deduction system. In particular, a Fitch-style natural deduction can be adapted to accommodate relevance by introducing tags at the end of each line of an application of an inference indicating the premises relevant to the conclusion of the inference. Gentzen-style sequent calculi can be modified by removing the weakening rules that allow for the introduction of arbitrary formulae on the right or left side of the sequents.A notable feature of relevance logics is that they are paraconsistent logics: the existence of a contradiction will not cause "explosion". This follows from the fact that a conditional with a contradictory antecedent that does not share any propositional or predicate letters with the consequent cannot be true (or derivable).".
- Relevance_logic wikiPageExternalLink logic-relevance.
- Relevance_logic wikiPageID "185076".
- Relevance_logic wikiPageRevisionID "589531807".
- Relevance_logic hasPhotoCollection Relevance_logic.
- Relevance_logic subject Category:Non-classical_logic.
- Relevance_logic subject Category:Paraconsistent_logic.
- Relevance_logic subject Category:Substructural_logic.
- Relevance_logic comment "Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics.".
- Relevance_logic label "Lógica relevante".
- Relevance_logic label "Relevance logic".
- Relevance_logic label "Relevanzlogik".
- Relevance_logic label "相干逻辑".
- Relevance_logic label "適切さの論理".
- Relevance_logic sameAs Relevanzlogik.
- Relevance_logic sameAs Lógica_relevante.
- Relevance_logic sameAs 適切さの論理.
- Relevance_logic sameAs m.0198ph.
- Relevance_logic sameAs Mx4rozLDIPmvQdeSefw55Nx5pA.
- Relevance_logic sameAs Q176630.
- Relevance_logic sameAs Q176630.
- Relevance_logic wasDerivedFrom Relevance_logic?oldid=589531807.
- Relevance_logic isPrimaryTopicOf Relevance_logic.