Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Repeating_decimal> ?p ?o. }
Showing items 1 to 38 of
38
with 100 items per page.
- Repeating_decimal abstract "A repeating or recurring decimal is a way of representing rational numbers in arithmetic. The decimal representation of a number is said to be repeating if it becomes periodic (repeating its values at regular intervals) and the infinitely-repeated digit is not zero. The decimal representation of ⅓ becomes periodic just after the decimal point, repeating the single-digit sequence "3" forever. A more complicated example is 3227/555, whose decimal becomes periodic after the second digit following the decimal point and then repeats the sequence "144" forever. At present, there is no single universally accepted notation or phrasing for repeating decimals.If the repeated digit is a zero, the rational number is called a terminating decimal, since the number is said to "terminate" before these zeros. Instead of taking any note of the repeated zeroes, they are simply omitted. All terminating decimals can be written as a decimal fraction whose divisor is a power of 10 (1.585 = 1585/1000); they may also be written as a ratio of the form k/2n5m (1.585 = 317/2352). However, every terminating decimal also has a second representation as a repeating decimal. This is obtained by decreasing the final non-zero digit by one and appending an infinitely-repeating sequence of nines, a non-obvious phenomenon that many find puzzling. 1 = 0.999… and 1.585 = 1.584999… are two examples of this. (This type of repeating decimal can be obtained by long division if one uses a modified form of the usual division algorithm.)Any number that cannot be expressed as a ratio of two integers is said to be irrational. Their decimal representation neither terminates nor infinitely repeats but extends forever without repetition. Examples of such irrational numbers include the square root of 2 and pi.".
- Repeating_decimal wikiPageID "13612447".
- Repeating_decimal wikiPageRevisionID "606199233".
- Repeating_decimal hasPhotoCollection Repeating_decimal.
- Repeating_decimal title "Repeating Decimal".
- Repeating_decimal urlname "RepeatingDecimal".
- Repeating_decimal subject Category:Elementary_arithmetic.
- Repeating_decimal subject Category:Numeral_systems.
- Repeating_decimal comment "A repeating or recurring decimal is a way of representing rational numbers in arithmetic. The decimal representation of a number is said to be repeating if it becomes periodic (repeating its values at regular intervals) and the infinitely-repeated digit is not zero. The decimal representation of ⅓ becomes periodic just after the decimal point, repeating the single-digit sequence "3" forever.".
- Repeating_decimal label "Dezimalbruch".
- Repeating_decimal label "Développement décimal périodique".
- Repeating_decimal label "Dízima periódica".
- Repeating_decimal label "Numero decimale periodico".
- Repeating_decimal label "Número decimal periódico".
- Repeating_decimal label "Repeating decimal".
- Repeating_decimal label "Repeterende breuk".
- Repeating_decimal label "Ułamek dziesiętny nieskończony".
- Repeating_decimal label "Десятичная дробь".
- Repeating_decimal label "تكرار عشري".
- Repeating_decimal label "循环小数".
- Repeating_decimal label "循環小数".
- Repeating_decimal sameAs Perioda_(matematika).
- Repeating_decimal sameAs Dezimalbruch.
- Repeating_decimal sameAs Περιοδικός_αριθμός.
- Repeating_decimal sameAs Número_decimal_periódico.
- Repeating_decimal sameAs Zenbaki_hamartar_periodiko.
- Repeating_decimal sameAs Développement_décimal_périodique.
- Repeating_decimal sameAs Numero_decimale_periodico.
- Repeating_decimal sameAs 循環小数.
- Repeating_decimal sameAs 순환소수.
- Repeating_decimal sameAs Repeterende_breuk.
- Repeating_decimal sameAs Ułamek_dziesiętny_nieskończony.
- Repeating_decimal sameAs Dízima_periódica.
- Repeating_decimal sameAs m.02bwbg.
- Repeating_decimal sameAs Q389208.
- Repeating_decimal sameAs Q389208.
- Repeating_decimal wasDerivedFrom Repeating_decimal?oldid=606199233.
- Repeating_decimal isPrimaryTopicOf Repeating_decimal.