Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Riemann_invariant> ?p ?o. }
Showing items 1 to 35 of
35
with 100 items per page.
- Riemann_invariant abstract "Riemann invariants are mathematical transformations made on a system of quasi-linear first order partial differential equations to make them more easily solvable. Riemann invariants are constant along the characteristic curves of the partial differential equations where they obtain the name invariant. They were first obtained by Bernhard Riemann in his work on plane waves in gas dynamics.".
- Riemann_invariant wikiPageID "32799114".
- Riemann_invariant wikiPageRevisionID "593548889".
- Riemann_invariant hasPhotoCollection Riemann_invariant.
- Riemann_invariant subject Category:Hyperbolic_partial_differential_equations.
- Riemann_invariant subject Category:Invariant_theory.
- Riemann_invariant subject Category:Partial_differential_equations.
- Riemann_invariant subject Category:Transformations.
- Riemann_invariant type Abstraction100002137.
- Riemann_invariant type Change107296428.
- Riemann_invariant type Communication100033020.
- Riemann_invariant type DifferentialEquation106670521.
- Riemann_invariant type Equation106669864.
- Riemann_invariant type Event100029378.
- Riemann_invariant type Happening107283608.
- Riemann_invariant type HyperbolicPartialDifferentialEquations.
- Riemann_invariant type MathematicalStatement106732169.
- Riemann_invariant type Message106598915.
- Riemann_invariant type PartialDifferentialEquation106670866.
- Riemann_invariant type PartialDifferentialEquations.
- Riemann_invariant type PsychologicalFeature100023100.
- Riemann_invariant type Statement106722453.
- Riemann_invariant type Transformation107359599.
- Riemann_invariant type Transformations.
- Riemann_invariant type YagoPermanentlyLocatedEntity.
- Riemann_invariant comment "Riemann invariants are mathematical transformations made on a system of quasi-linear first order partial differential equations to make them more easily solvable. Riemann invariants are constant along the characteristic curves of the partial differential equations where they obtain the name invariant. They were first obtained by Bernhard Riemann in his work on plane waves in gas dynamics.".
- Riemann_invariant label "Invariant de Riemann".
- Riemann_invariant label "Riemann invariant".
- Riemann_invariant sameAs Invariant_de_Riemann.
- Riemann_invariant sameAs m.0h3t02h.
- Riemann_invariant sameAs Q5987493.
- Riemann_invariant sameAs Q5987493.
- Riemann_invariant sameAs Riemann_invariant.
- Riemann_invariant wasDerivedFrom Riemann_invariant?oldid=593548889.
- Riemann_invariant isPrimaryTopicOf Riemann_invariant.