Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Root_of_unity_modulo_n> ?p ?o. }
Showing items 1 to 12 of
12
with 100 items per page.
- Root_of_unity_modulo_n abstract "In mathematics, namely ring theory, a k-th root of unity modulo n for positive integers k, n ≥ 2, is a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive k-th root of unity modulo n. See modular arithmetic for notation and terminology.Do not confuse this with a primitive element modulo n, where the primitive element must generate all units of the residue class ring by exponentiation.That is, there are always roots and primitive roots of unity modulo n for n ≥ 2, but for some n there is no primitive element modulo n. Being a root or a primitive root modulo n always depends on the exponent k and the modulus n, whereas being a primitive element modulo n only depends on the modulus n — the exponent is automatically .".
- Root_of_unity_modulo_n wikiPageID "30949769".
- Root_of_unity_modulo_n wikiPageRevisionID "601406382".
- Root_of_unity_modulo_n hasPhotoCollection Root_of_unity_modulo_n.
- Root_of_unity_modulo_n subject Category:Modular_arithmetic.
- Root_of_unity_modulo_n comment "In mathematics, namely ring theory, a k-th root of unity modulo n for positive integers k, n ≥ 2, is a solution x to the equation (or congruence) . If k is the smallest such exponent for x, then x is called a primitive k-th root of unity modulo n.".
- Root_of_unity_modulo_n label "Root of unity modulo n".
- Root_of_unity_modulo_n sameAs m.0gg89x_.
- Root_of_unity_modulo_n sameAs Q7366581.
- Root_of_unity_modulo_n sameAs Q7366581.
- Root_of_unity_modulo_n wasDerivedFrom Root_of_unity_modulo_n?oldid=601406382.
- Root_of_unity_modulo_n isPrimaryTopicOf Root_of_unity_modulo_n.