Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Schreier_refinement_theorem> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Schreier_refinement_theorem abstract "In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one.The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma.".
- Schreier_refinement_theorem wikiPageID "947167".
- Schreier_refinement_theorem wikiPageRevisionID "590661770".
- Schreier_refinement_theorem hasPhotoCollection Schreier_refinement_theorem.
- Schreier_refinement_theorem subject Category:Theorems_in_group_theory.
- Schreier_refinement_theorem type Abstraction100002137.
- Schreier_refinement_theorem type Communication100033020.
- Schreier_refinement_theorem type Message106598915.
- Schreier_refinement_theorem type Proposition106750804.
- Schreier_refinement_theorem type Statement106722453.
- Schreier_refinement_theorem type Theorem106752293.
- Schreier_refinement_theorem type TheoremsInAlgebra.
- Schreier_refinement_theorem type TheoremsInGroupTheory.
- Schreier_refinement_theorem comment "In mathematics, the Schreier refinement theorem of group theory states that any two subnormal series of subgroups of a given group have equivalent refinements, where two series are equivalent if there is a bijection between their factor groups that sends each factor group to an isomorphic one.The theorem is named after the Austrian mathematician Otto Schreier who proved it in 1928. It provides an elegant proof of the Jordan–Hölder theorem. It is often proved using the Zassenhaus lemma.".
- Schreier_refinement_theorem label "Schreier refinement theorem".
- Schreier_refinement_theorem label "Théorème de raffinement de Schreier".
- Schreier_refinement_theorem sameAs Théorème_de_raffinement_de_Schreier.
- Schreier_refinement_theorem sameAs m.03sd5t.
- Schreier_refinement_theorem sameAs Q7432872.
- Schreier_refinement_theorem sameAs Q7432872.
- Schreier_refinement_theorem sameAs Schreier_refinement_theorem.
- Schreier_refinement_theorem wasDerivedFrom Schreier_refinement_theorem?oldid=590661770.
- Schreier_refinement_theorem isPrimaryTopicOf Schreier_refinement_theorem.