Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Seifert_surface> ?p ?o. }
Showing items 1 to 33 of
33
with 100 items per page.
- Seifert_surface abstract "In mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is a surface whose boundary is a given knot or link. Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface. Seifert surfaces are also interesting in their own right, and the subject of considerable research.Specifically, let L be a tame oriented knot or link in Euclidean 3-space (or in the 3-sphere). A Seifert surface is a compact, connected, oriented surface S embedded in 3-space whose boundary is L such that the orientation on L is just the induced orientation from S, and every connected component of S has non-empty boundary. Note that any compact, connected, oriented surface with nonempty boundary in Euclidean 3-space is the Seifert surface associated to its boundary link. A single knot or link can have many different inequivalent Seifert surfaces. A Seifert surface must be oriented. It is possible to associate unoriented (and not necessarily orientable) surfaces to knots as well.".
- Seifert_surface thumbnail Borromean_Seifert_surface.png?width=300.
- Seifert_surface wikiPageExternalLink seifertview.
- Seifert_surface wikiPageID "1343951".
- Seifert_surface wikiPageRevisionID "556605333".
- Seifert_surface hasPhotoCollection Seifert_surface.
- Seifert_surface subject Category:Geometric_topology.
- Seifert_surface subject Category:Knot_theory.
- Seifert_surface subject Category:Surfaces.
- Seifert_surface type Artifact100021939.
- Seifert_surface type Object100002684.
- Seifert_surface type PhysicalEntity100001930.
- Seifert_surface type Surface104362025.
- Seifert_surface type Surfaces.
- Seifert_surface type Whole100003553.
- Seifert_surface comment "In mathematics, a Seifert surface (named after German mathematician Herbert Seifert) is a surface whose boundary is a given knot or link. Such surfaces can be used to study the properties of the associated knot or link. For example, many knot invariants are most easily calculated using a Seifert surface. Seifert surfaces are also interesting in their own right, and the subject of considerable research.Specifically, let L be a tame oriented knot or link in Euclidean 3-space (or in the 3-sphere).".
- Seifert_surface label "Género de um nó".
- Seifert_surface label "Seifert surface".
- Seifert_surface label "Seifert-Fläche".
- Seifert_surface label "Seifert-oppervlak".
- Seifert_surface label "Поверхность Зейферта".
- Seifert_surface label "ザイフェルト曲面".
- Seifert_surface sameAs Seifert-Fläche.
- Seifert_surface sameAs ザイフェルト曲面.
- Seifert_surface sameAs Seifert-oppervlak.
- Seifert_surface sameAs Género_de_um_nó.
- Seifert_surface sameAs m.04vblh.
- Seifert_surface sameAs Q1554293.
- Seifert_surface sameAs Q1554293.
- Seifert_surface sameAs Seifert_surface.
- Seifert_surface wasDerivedFrom Seifert_surface?oldid=556605333.
- Seifert_surface depiction Borromean_Seifert_surface.png.
- Seifert_surface isPrimaryTopicOf Seifert_surface.