Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Shannon_multigraph> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Shannon_multigraph abstract "In the mathematical discipline of graph theory, Shannon multigraphs, named after Claude Shannon by Vizing (1965), are a special type of triangle graphs, which are used in the field of edge coloring in particular.A Shannon multigraph is multigraph with 3 vertices for which either of the following conditions holds:a) all 3 vertices are connected by the same number of edges.b) as in a) and one additional edge is added.More precisely one speaks of Shannon multigraph Sh(n), if the three vertices are connected by , and edges respectively. This multigraph has maximum degree n. Its multiplicity (the maximum number of edges in a set of edges that all have the same endpoints) is .".
- Shannon_multigraph thumbnail Multigraph-edge-coloring.svg?width=300.
- Shannon_multigraph wikiPageExternalLink graphen_an_allen_ecken_und_kanten.pdf.
- Shannon_multigraph wikiPageID "25443519".
- Shannon_multigraph wikiPageRevisionID "545816089".
- Shannon_multigraph hasPhotoCollection Shannon_multigraph.
- Shannon_multigraph subject Category:Parametric_families_of_graphs.
- Shannon_multigraph type Abstraction100002137.
- Shannon_multigraph type Family108078020.
- Shannon_multigraph type Group100031264.
- Shannon_multigraph type Organization108008335.
- Shannon_multigraph type ParametricFamiliesOfGraphs.
- Shannon_multigraph type SocialGroup107950920.
- Shannon_multigraph type Unit108189659.
- Shannon_multigraph type YagoLegalActor.
- Shannon_multigraph type YagoLegalActorGeo.
- Shannon_multigraph type YagoPermanentlyLocatedEntity.
- Shannon_multigraph comment "In the mathematical discipline of graph theory, Shannon multigraphs, named after Claude Shannon by Vizing (1965), are a special type of triangle graphs, which are used in the field of edge coloring in particular.A Shannon multigraph is multigraph with 3 vertices for which either of the following conditions holds:a) all 3 vertices are connected by the same number of edges.b) as in a) and one additional edge is added.More precisely one speaks of Shannon multigraph Sh(n), if the three vertices are connected by , and edges respectively. ".
- Shannon_multigraph label "Shannon multigraph".
- Shannon_multigraph label "Shannon-Multigraph".
- Shannon_multigraph label "Мультиграф Шеннона".
- Shannon_multigraph sameAs Shannon-Multigraph.
- Shannon_multigraph sameAs m.09k5qrf.
- Shannon_multigraph sameAs Q1390132.
- Shannon_multigraph sameAs Q1390132.
- Shannon_multigraph sameAs Shannon_multigraph.
- Shannon_multigraph wasDerivedFrom Shannon_multigraph?oldid=545816089.
- Shannon_multigraph depiction Multigraph-edge-coloring.svg.
- Shannon_multigraph isPrimaryTopicOf Shannon_multigraph.