Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Shimura_correspondence> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- Shimura_correspondence abstract "In number theory, the Shimura correspondenceis a correspondence between modular forms F of half integral weight k+1/2, and modular forms f of even weight 2k, discovered by Goro Shimura (1973). It has the property that the eigenvalue of a Hecke operator Tn2 on F is equal to the eigenvalue of Tn on f.".
- Shimura_correspondence wikiPageID "28754333".
- Shimura_correspondence wikiPageRevisionID "447970833".
- Shimura_correspondence authorlink "Goro Shimura".
- Shimura_correspondence first "D.".
- Shimura_correspondence first "Goro".
- Shimura_correspondence hasPhotoCollection Shimura_correspondence.
- Shimura_correspondence id "S/s130280".
- Shimura_correspondence last "Bump".
- Shimura_correspondence last "Shimura".
- Shimura_correspondence year "1973".
- Shimura_correspondence subject Category:Modular_forms.
- Shimura_correspondence type Abstraction100002137.
- Shimura_correspondence type Form106290637.
- Shimura_correspondence type LanguageUnit106284225.
- Shimura_correspondence type ModularForms.
- Shimura_correspondence type Part113809207.
- Shimura_correspondence type Relation100031921.
- Shimura_correspondence type Word106286395.
- Shimura_correspondence comment "In number theory, the Shimura correspondenceis a correspondence between modular forms F of half integral weight k+1/2, and modular forms f of even weight 2k, discovered by Goro Shimura (1973). It has the property that the eigenvalue of a Hecke operator Tn2 on F is equal to the eigenvalue of Tn on f.".
- Shimura_correspondence label "Shimura correspondence".
- Shimura_correspondence sameAs m.0ddg2sx.
- Shimura_correspondence sameAs Q7497061.
- Shimura_correspondence sameAs Q7497061.
- Shimura_correspondence sameAs Shimura_correspondence.
- Shimura_correspondence wasDerivedFrom Shimura_correspondence?oldid=447970833.
- Shimura_correspondence isPrimaryTopicOf Shimura_correspondence.