Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Singular_integral> ?p ?o. }
Showing items 1 to 29 of
29
with 100 items per page.
- Singular_integral abstract "In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → Rn is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality. Usually further assumptions are required to obtain results such as their boundedness on Lp(Rn).".
- Singular_integral wikiPageExternalLink v=onepage&q=.
- Singular_integral wikiPageExternalLink ?id=sAWpsmkqziEC&printsec=frontcover&dq=Singular+integrals+and+differentiability+properties+of+functions.
- Singular_integral wikiPageExternalLink p29.
- Singular_integral wikiPageID "12791220".
- Singular_integral wikiPageRevisionID "583672669".
- Singular_integral hasPhotoCollection Singular_integral.
- Singular_integral subject Category:Harmonic_analysis.
- Singular_integral subject Category:Real_analysis.
- Singular_integral subject Category:Singular_integrals.
- Singular_integral type Abstraction100002137.
- Singular_integral type Calculation105802185.
- Singular_integral type Cognition100023271.
- Singular_integral type HigherCognitiveProcess105770664.
- Singular_integral type Integral106015505.
- Singular_integral type ProblemSolving105796750.
- Singular_integral type Process105701363.
- Singular_integral type PsychologicalFeature100023100.
- Singular_integral type SingularIntegrals.
- Singular_integral type Thinking105770926.
- Singular_integral comment "In mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → Rn is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0.".
- Singular_integral label "Singular integral".
- Singular_integral label "奇異積分".
- Singular_integral sameAs m.03w9d4w.
- Singular_integral sameAs Q888122.
- Singular_integral sameAs Q888122.
- Singular_integral sameAs Singular_integral.
- Singular_integral wasDerivedFrom Singular_integral?oldid=583672669.
- Singular_integral isPrimaryTopicOf Singular_integral.