Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Smallest-circle_problem> ?p ?o. }
Showing items 1 to 21 of
21
with 100 items per page.
- Smallest-circle_problem abstract "The smallest-circle problem or minimum covering circle problem is a mathematical problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional space, the smallest bounding-sphere problem, is to compute the smallest n-sphere that contains all of a given set of points. The smallest-circle problem was initially proposed by the English mathematician James Joseph Sylvester in 1857.The smallest-circle problem in the plane is an example of a facility location problem (the 1-center problem) in which the location of a new facility must be chosen to provide service to a number of customers, minimizing the farthest distance that any customer must travel to reach the new facility. Both the smallest circle problem in the plane, and the smallest bounding sphere problem in any higher-dimensional space of bounded dimension, may be solved in linear time.".
- Smallest-circle_problem thumbnail Smallest_circle_problem.svg?width=300.
- Smallest-circle_problem wikiPageExternalLink miniball.
- Smallest-circle_problem wikiPageExternalLink Chapter_main.html.
- Smallest-circle_problem wikiPageExternalLink miniball.html.
- Smallest-circle_problem wikiPageID "14355284".
- Smallest-circle_problem wikiPageRevisionID "606694663".
- Smallest-circle_problem hasPhotoCollection Smallest-circle_problem.
- Smallest-circle_problem subject Category:Circles.
- Smallest-circle_problem subject Category:Combinatorial_optimization.
- Smallest-circle_problem subject Category:Computational_geometry.
- Smallest-circle_problem comment "The smallest-circle problem or minimum covering circle problem is a mathematical problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional space, the smallest bounding-sphere problem, is to compute the smallest n-sphere that contains all of a given set of points.".
- Smallest-circle_problem label "Problème du cercle minimum".
- Smallest-circle_problem label "Smallest-circle problem".
- Smallest-circle_problem sameAs Problème_du_cercle_minimum.
- Smallest-circle_problem sameAs m.03d1gy0.
- Smallest-circle_problem sameAs Q2591189.
- Smallest-circle_problem sameAs Q2591189.
- Smallest-circle_problem wasDerivedFrom Smallest-circle_problem?oldid=606694663.
- Smallest-circle_problem depiction Smallest_circle_problem.svg.
- Smallest-circle_problem isPrimaryTopicOf Smallest-circle_problem.