Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Spin_structure> ?p ?o. }
Showing items 1 to 36 of
36
with 100 items per page.
- Spin_structure abstract "In differential geometry, a spin structure on an orientable Riemannian manifold (M,g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry.".
- Spin_structure wikiPageExternalLink Spin.pdf.
- Spin_structure wikiPageExternalLink 9605184.
- Spin_structure wikiPageExternalLink 9703157.
- Spin_structure wikiPageID "2844303".
- Spin_structure wikiPageRevisionID "605007219".
- Spin_structure hasPhotoCollection Spin_structure.
- Spin_structure subject Category:Algebraic_topology.
- Spin_structure subject Category:K-theory.
- Spin_structure subject Category:Mathematical_physics.
- Spin_structure subject Category:Riemannian_manifolds.
- Spin_structure subject Category:Structures_on_manifolds.
- Spin_structure type Artifact100021939.
- Spin_structure type Conduit103089014.
- Spin_structure type Manifold103717750.
- Spin_structure type Object100002684.
- Spin_structure type Passage103895293.
- Spin_structure type PhysicalEntity100001930.
- Spin_structure type Pipe103944672.
- Spin_structure type RiemannianManifolds.
- Spin_structure type Structure104341686.
- Spin_structure type StructuresOnManifolds.
- Spin_structure type Tube104493505.
- Spin_structure type Way104564698.
- Spin_structure type Whole100003553.
- Spin_structure type YagoGeoEntity.
- Spin_structure type YagoPermanentlyLocatedEntity.
- Spin_structure comment "In differential geometry, a spin structure on an orientable Riemannian manifold (M,g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry.Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions.".
- Spin_structure label "Spin structure".
- Spin_structure sameAs 스핀_다양체.
- Spin_structure sameAs m.086ch9.
- Spin_structure sameAs Q7577418.
- Spin_structure sameAs Q7577418.
- Spin_structure sameAs Spin_structure.
- Spin_structure wasDerivedFrom Spin_structure?oldid=605007219.
- Spin_structure isPrimaryTopicOf Spin_structure.