Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Standard_monomial_theory> ?p ?o. }
Showing items 1 to 54 of
54
with 100 items per page.
- Standard_monomial_theory abstract "In algebraic geometry, standard monomial theory describes the sections of a line bundle over a generalized flag variety or Schubert variety of a reductive algebraic group by giving an explicit basis of elements called standard monomials. Many of the results have been extended to Kac–Moody algebras and their groups. There are monographs on standard monomial theory by Lakshmibai & Raghavan (2008) and Seshadri (2007) and survey articles by V. Lakshmibai, C. Musili, and C. S. Seshadri (1979) and V. Lakshmibai and C. S. Seshadri (1991)".
- Standard_monomial_theory wikiPageExternalLink books?id=5rJ1t0aNuygC&pg=PA175.
- Standard_monomial_theory wikiPageExternalLink books?id=bJwbn3RSWhwC.
- Standard_monomial_theory wikiPageExternalLink books?id=sjGmWWicE10C&pg=PA283.
- Standard_monomial_theory wikiPageExternalLink books?id=sjGmWWicE10C&pg=PA385.
- Standard_monomial_theory wikiPageExternalLink S0273-0979-1979-14631-7.
- Standard_monomial_theory wikiPageExternalLink S0894-0347-98-00268-9.
- Standard_monomial_theory wikiPageExternalLink item=HIN-34.
- Standard_monomial_theory wikiPageExternalLink item=HIN-50.
- Standard_monomial_theory wikiPageExternalLink cambridge.pdf.
- Standard_monomial_theory wikiPageID "37358718".
- Standard_monomial_theory wikiPageRevisionID "603891551".
- Standard_monomial_theory authorlink "Alfred Young".
- Standard_monomial_theory chapter "Standard monomial theory".
- Standard_monomial_theory doi "10.109".
- Standard_monomial_theory editor1First "S.".
- Standard_monomial_theory editor1Last "Ramanan".
- Standard_monomial_theory editor2First "C.".
- Standard_monomial_theory editor2Last "Musili".
- Standard_monomial_theory editor3First "N. Mohan".
- Standard_monomial_theory editor3Last "Kumar".
- Standard_monomial_theory first "Alfred".
- Standard_monomial_theory first "C. S.".
- Standard_monomial_theory first "C.".
- Standard_monomial_theory first "V.".
- Standard_monomial_theory hasPhotoCollection Standard_monomial_theory.
- Standard_monomial_theory issn "2".
- Standard_monomial_theory issue "2".
- Standard_monomial_theory journal "American Mathematical Society. Bulletin. New Series".
- Standard_monomial_theory last "Lakshmibai".
- Standard_monomial_theory last "Musili".
- Standard_monomial_theory last "Seshadri".
- Standard_monomial_theory last "Young".
- Standard_monomial_theory location "Madras".
- Standard_monomial_theory pages "279".
- Standard_monomial_theory pages "432".
- Standard_monomial_theory publisher "Manoj Prakashan".
- Standard_monomial_theory title "Geometry of G/P".
- Standard_monomial_theory title "Proceedings of the Hyderabad Conference on Algebraic Groups".
- Standard_monomial_theory url "http://books.google.com/books?id=r\_3uAAAAMAAJ".
- Standard_monomial_theory url S0273-0979-1979-14631-7.
- Standard_monomial_theory volume "1".
- Standard_monomial_theory year "1928".
- Standard_monomial_theory year "1979".
- Standard_monomial_theory year "1991".
- Standard_monomial_theory subject Category:Algebraic_geometry.
- Standard_monomial_theory subject Category:Invariant_theory.
- Standard_monomial_theory comment "In algebraic geometry, standard monomial theory describes the sections of a line bundle over a generalized flag variety or Schubert variety of a reductive algebraic group by giving an explicit basis of elements called standard monomials. Many of the results have been extended to Kac–Moody algebras and their groups. There are monographs on standard monomial theory by Lakshmibai & Raghavan (2008) and Seshadri (2007) and survey articles by V. Lakshmibai, C. Musili, and C. S.".
- Standard_monomial_theory label "Standard monomial theory".
- Standard_monomial_theory sameAs m.0n8_r7s.
- Standard_monomial_theory sameAs Q7598355.
- Standard_monomial_theory sameAs Q7598355.
- Standard_monomial_theory wasDerivedFrom Standard_monomial_theory?oldid=603891551.
- Standard_monomial_theory isPrimaryTopicOf Standard_monomial_theory.