Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Stieltjes_polynomials> ?p ?o. }
Showing items 1 to 25 of
25
with 100 items per page.
- Stieltjes_polynomials abstract "In mathematics, the Stieltjes polynomials En are polynomials associated to a family of orthogonal polynomials Pn. They are unrelated to the Stieltjes polynomial solutions of differential equations. Stieltjes originally considered the case where the orthogonal polynomials Pn are the Legendre polynomials. The Gauss–Kronrod quadrature formula uses the zeros of Stieltjes polynomials.".
- Stieltjes_polynomials wikiPageID "32896001".
- Stieltjes_polynomials wikiPageRevisionID "447692274".
- Stieltjes_polynomials first "Sven".
- Stieltjes_polynomials hasPhotoCollection Stieltjes_polynomials.
- Stieltjes_polynomials id "s/s120250".
- Stieltjes_polynomials last "Ehrich".
- Stieltjes_polynomials title "Stieltjes polynomials".
- Stieltjes_polynomials subject Category:Orthogonal_polynomials.
- Stieltjes_polynomials type Abstraction100002137.
- Stieltjes_polynomials type Function113783816.
- Stieltjes_polynomials type MathematicalRelation113783581.
- Stieltjes_polynomials type OrthogonalPolynomials.
- Stieltjes_polynomials type Polynomial105861855.
- Stieltjes_polynomials type Relation100031921.
- Stieltjes_polynomials comment "In mathematics, the Stieltjes polynomials En are polynomials associated to a family of orthogonal polynomials Pn. They are unrelated to the Stieltjes polynomial solutions of differential equations. Stieltjes originally considered the case where the orthogonal polynomials Pn are the Legendre polynomials. The Gauss–Kronrod quadrature formula uses the zeros of Stieltjes polynomials.".
- Stieltjes_polynomials label "Stieltjes polynomials".
- Stieltjes_polynomials label "スティルチェス多項式".
- Stieltjes_polynomials sameAs スティルチェス多項式.
- Stieltjes_polynomials sameAs m.0h3n7sf.
- Stieltjes_polynomials sameAs Q7616381.
- Stieltjes_polynomials sameAs Q7616381.
- Stieltjes_polynomials sameAs Stieltjes_polynomials.
- Stieltjes_polynomials wasDerivedFrom Stieltjes_polynomials?oldid=447692274.
- Stieltjes_polynomials isPrimaryTopicOf Stieltjes_polynomials.