Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Strategy-stealing_argument> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Strategy-stealing_argument abstract "In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a winning strategy (i.e., a strategy that will always win the game for them, no matter what moves the first player makes).The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. Examples of games to which the argument applies are hex, chomp and the m,n,k-games such as gomoku. In hex ties are not possible, so the argument shows that it is a first-player win.".
- Strategy-stealing_argument wikiPageID "709783".
- Strategy-stealing_argument wikiPageRevisionID "575214349".
- Strategy-stealing_argument hasPhotoCollection Strategy-stealing_argument.
- Strategy-stealing_argument subject Category:Arguments.
- Strategy-stealing_argument subject Category:Mathematical_games.
- Strategy-stealing_argument type Abstraction100002137.
- Strategy-stealing_argument type Argument106648724.
- Strategy-stealing_argument type Arguments.
- Strategy-stealing_argument type Communication100033020.
- Strategy-stealing_argument type Contest107456188.
- Strategy-stealing_argument type Event100029378.
- Strategy-stealing_argument type Evidence106643408.
- Strategy-stealing_argument type Game100456199.
- Strategy-stealing_argument type Indication106797169.
- Strategy-stealing_argument type MathematicalGames.
- Strategy-stealing_argument type PsychologicalFeature100023100.
- Strategy-stealing_argument type SocialEvent107288639.
- Strategy-stealing_argument type YagoPermanentlyLocatedEntity.
- Strategy-stealing_argument comment "In combinatorial game theory, the strategy-stealing argument is a general argument that shows, for many two-player games, that the second player cannot have a winning strategy (i.e., a strategy that will always win the game for them, no matter what moves the first player makes).The strategy-stealing argument applies to any symmetric game (one in which either player has the same set of available moves with the same results, so that the first player can "use" the second player's strategy) in which an extra move can never be a disadvantage. ".
- Strategy-stealing_argument label "Dimostrazione per furto di strategia".
- Strategy-stealing_argument label "Strategy-stealing argument".
- Strategy-stealing_argument label "Заимствование стратегии".
- Strategy-stealing_argument sameAs Argument_o_kradení_strategie.
- Strategy-stealing_argument sameAs Dimostrazione_per_furto_di_strategia.
- Strategy-stealing_argument sameAs 전략_훔치기_논증.
- Strategy-stealing_argument sameAs m.034rpr.
- Strategy-stealing_argument sameAs Q1158962.
- Strategy-stealing_argument sameAs Q1158962.
- Strategy-stealing_argument sameAs Strategy-stealing_argument.
- Strategy-stealing_argument wasDerivedFrom Strategy-stealing_argument?oldid=575214349.
- Strategy-stealing_argument isPrimaryTopicOf Strategy-stealing_argument.