Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Strictly_non-palindromic_number> ?p ?o. }
Showing items 1 to 32 of
32
with 100 items per page.
- Strictly_non-palindromic_number abstract "A strictly non-palindromic number is an integer n that is not palindromic in any numeral system with a base b in the range 2 ≤ b ≤ n − 2. For example, the number six is written as 110 in base 2, 20 in base 3 and 12 in base 4, none of which is a palindrome—so 6 is strictly non-palindromic.Besides, the number 167 written in base b is:and none of which is a palindrome, so 167 is also a strictly non-palindromic number.The sequence of strictly non-palindromic numbers (sequence A016038 in OEIS) starts:1, 2, 3, 4, 6, 11, 19, 47, 53, 79, 103, 137, 139, 149, 163, 167, 179, 223, 263, 269, 283, 293, …To test whether a number n is strictly non-palindromic, it must be verified that n is non-palindromic in all bases up to n − 2. The reasons for this upper limit are:any n ≥ 2 is written 11 in base n − 1, so n is palindromic in base n − 1;any n ≥ 2 is written 10 in base n, so any n is non-palindromic in base n;any n ≥ 1 is a single-digit number in any base b > n, so any n is palindromic in all such bases.Thus it can be seen that the upper limit of n − 2 is necessary to obtain a mathematically 'interesting' definition.For example, 167 will be written as:For n < 4 the range of bases is empty, so these numbers are strictly non-palindromic in a trivial way.".
- Strictly_non-palindromic_number wikiPageID "1844743".
- Strictly_non-palindromic_number wikiPageRevisionID "604406999".
- Strictly_non-palindromic_number hasPhotoCollection Strictly_non-palindromic_number.
- Strictly_non-palindromic_number subject Category:Integer_sequences.
- Strictly_non-palindromic_number subject Category:Palindromes.
- Strictly_non-palindromic_number type Abstraction100002137.
- Strictly_non-palindromic_number type Arrangement107938773.
- Strictly_non-palindromic_number type Group100031264.
- Strictly_non-palindromic_number type IntegerSequences.
- Strictly_non-palindromic_number type LanguageUnit106284225.
- Strictly_non-palindromic_number type Ordering108456993.
- Strictly_non-palindromic_number type Palindrome106294828.
- Strictly_non-palindromic_number type Palindromes.
- Strictly_non-palindromic_number type Part113809207.
- Strictly_non-palindromic_number type Relation100031921.
- Strictly_non-palindromic_number type Sequence108459252.
- Strictly_non-palindromic_number type Series108457976.
- Strictly_non-palindromic_number type Word106286395.
- Strictly_non-palindromic_number comment "A strictly non-palindromic number is an integer n that is not palindromic in any numeral system with a base b in the range 2 ≤ b ≤ n − 2.".
- Strictly_non-palindromic_number label "Numero strettamente non palindromo".
- Strictly_non-palindromic_number label "Streng nicht-palindromische Zahl".
- Strictly_non-palindromic_number label "Strictly non-palindromic number".
- Strictly_non-palindromic_number label "嚴格非迴文數".
- Strictly_non-palindromic_number sameAs Streng_nicht-palindromische_Zahl.
- Strictly_non-palindromic_number sameAs Numero_strettamente_non_palindromo.
- Strictly_non-palindromic_number sameAs m.060gcr.
- Strictly_non-palindromic_number sameAs Q145134.
- Strictly_non-palindromic_number sameAs Q145134.
- Strictly_non-palindromic_number sameAs Strictly_non-palindromic_number.
- Strictly_non-palindromic_number wasDerivedFrom Strictly_non-palindromic_number?oldid=604406999.
- Strictly_non-palindromic_number isPrimaryTopicOf Strictly_non-palindromic_number.