Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Strictly_simple_group> ?p ?o. }
Showing items 1 to 20 of
20
with 100 items per page.
- Strictly_simple_group abstract "In mathematics, in the field of group theory, a group is said to be strictly simple if it has no proper nontrivial ascendant subgroups. That is, is a strictly simple group if the only ascendant subgroups of are (the trivial subgroup), and itself (the whole group).In the finite case, a group is strictly simple if and only if it is simple. However, in the infinite case, strictly simple is a stronger property than simple.".
- Strictly_simple_group wikiPageExternalLink Simple_group.
- Strictly_simple_group wikiPageID "4966772".
- Strictly_simple_group wikiPageRevisionID "468917419".
- Strictly_simple_group hasPhotoCollection Strictly_simple_group.
- Strictly_simple_group subject Category:Group_theory.
- Strictly_simple_group subject Category:Properties_of_groups.
- Strictly_simple_group type Abstraction100002137.
- Strictly_simple_group type Possession100032613.
- Strictly_simple_group type PropertiesOfGroups.
- Strictly_simple_group type Property113244109.
- Strictly_simple_group type Relation100031921.
- Strictly_simple_group comment "In mathematics, in the field of group theory, a group is said to be strictly simple if it has no proper nontrivial ascendant subgroups. That is, is a strictly simple group if the only ascendant subgroups of are (the trivial subgroup), and itself (the whole group).In the finite case, a group is strictly simple if and only if it is simple. However, in the infinite case, strictly simple is a stronger property than simple.".
- Strictly_simple_group label "Strictly simple group".
- Strictly_simple_group sameAs m.0cxkj1.
- Strictly_simple_group sameAs Q7623692.
- Strictly_simple_group sameAs Q7623692.
- Strictly_simple_group sameAs Strictly_simple_group.
- Strictly_simple_group wasDerivedFrom Strictly_simple_group?oldid=468917419.
- Strictly_simple_group isPrimaryTopicOf Strictly_simple_group.