Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Strong_perfect_graph_theorem> ?p ?o. }
Showing items 1 to 27 of
27
with 100 items per page.
- Strong_perfect_graph_theorem abstract "In graph theory, the strong perfect graph theorem is a forbidden graph characterization of the perfect graphs as being exactly the graphs that have neither odd holes (odd-length induced cycles) nor odd antiholes (complements of odd holes). It was conjectured by Claude Berge in 1961. A proof by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas was announced in 2002 and published by them in 2006.The proof of the strong perfect graph theorem won for its authors a $10,000 prize offered by Gérard Cornuéjols of Carnegie Mellon University and the 2009 Fulkerson Prize.".
- Strong_perfect_graph_theorem wikiPageExternalLink p02.xhtml.
- Strong_perfect_graph_theorem wikiPageExternalLink pds.pdf.
- Strong_perfect_graph_theorem wikiPageExternalLink spgt.html.
- Strong_perfect_graph_theorem wikiPageExternalLink icm2002.3.0547.0560.ocr.pdf.
- Strong_perfect_graph_theorem wikiPageID "744171".
- Strong_perfect_graph_theorem wikiPageRevisionID "590331138".
- Strong_perfect_graph_theorem hasPhotoCollection Strong_perfect_graph_theorem.
- Strong_perfect_graph_theorem title "Strong Perfect Graph Theorem".
- Strong_perfect_graph_theorem urlname "StrongPerfectGraphTheorem".
- Strong_perfect_graph_theorem subject Category:Perfect_graphs.
- Strong_perfect_graph_theorem subject Category:Theorems_in_graph_theory.
- Strong_perfect_graph_theorem type Abstraction100002137.
- Strong_perfect_graph_theorem type Communication100033020.
- Strong_perfect_graph_theorem type Message106598915.
- Strong_perfect_graph_theorem type Proposition106750804.
- Strong_perfect_graph_theorem type Statement106722453.
- Strong_perfect_graph_theorem type Theorem106752293.
- Strong_perfect_graph_theorem type TheoremsInDiscreteMathematics.
- Strong_perfect_graph_theorem comment "In graph theory, the strong perfect graph theorem is a forbidden graph characterization of the perfect graphs as being exactly the graphs that have neither odd holes (odd-length induced cycles) nor odd antiholes (complements of odd holes). It was conjectured by Claude Berge in 1961.".
- Strong_perfect_graph_theorem label "Strong perfect graph theorem".
- Strong_perfect_graph_theorem sameAs m.0kvc0nk.
- Strong_perfect_graph_theorem sameAs Q17156804.
- Strong_perfect_graph_theorem sameAs Q17156804.
- Strong_perfect_graph_theorem sameAs Strong_perfect_graph_theorem.
- Strong_perfect_graph_theorem wasDerivedFrom Strong_perfect_graph_theorem?oldid=590331138.
- Strong_perfect_graph_theorem isPrimaryTopicOf Strong_perfect_graph_theorem.