Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Strongly_regular_graph> ?p ?o. }
Showing items 1 to 37 of
37
with 100 items per page.
- Strongly_regular_graph abstract "In graph theory, a strongly regular graph is defined as follows. Let G = (V,E) be a regular graph with v vertices and degree k. G is said to be strongly regular if there are also integers λ and μ such that: Every two adjacent vertices have λ common neighbours. Every two non-adjacent vertices have μ common neighbours.A graph of this kind is sometimes said to be an srg(v, k, λ, μ).Some authors exclude graphs which satisfy the definition trivially, namely those graphs which are the disjoint union of one or more equal-sized complete graphs, and their complements, the Turán graphs.The complement of an srg(v, k, λ, μ) is also strongly regular. It is an srg(v, v−k−1, v−2−2k+μ, v−2k+λ).A strongly regular graph is a distance-regular graph with diameter 2, but only if μ is non-zero.".
- Strongly_regular_graph thumbnail Paley13.svg?width=300.
- Strongly_regular_graph wikiPageExternalLink graphs.html.
- Strongly_regular_graph wikiPageExternalLink StronglyRegularGraph.html.
- Strongly_regular_graph wikiPageExternalLink srgs.
- Strongly_regular_graph wikiPageExternalLink srgraphs.php.
- Strongly_regular_graph wikiPageExternalLink srgtab.html.
- Strongly_regular_graph wikiPageID "1399856".
- Strongly_regular_graph wikiPageRevisionID "602151783".
- Strongly_regular_graph hasPhotoCollection Strongly_regular_graph.
- Strongly_regular_graph subject Category:Algebraic_graph_theory.
- Strongly_regular_graph subject Category:Graph_families.
- Strongly_regular_graph subject Category:Regular_graphs.
- Strongly_regular_graph type Abstraction100002137.
- Strongly_regular_graph type Family108078020.
- Strongly_regular_graph type GraphFamilies.
- Strongly_regular_graph type Group100031264.
- Strongly_regular_graph type Organization108008335.
- Strongly_regular_graph type SocialGroup107950920.
- Strongly_regular_graph type Unit108189659.
- Strongly_regular_graph type YagoLegalActor.
- Strongly_regular_graph type YagoLegalActorGeo.
- Strongly_regular_graph type YagoPermanentlyLocatedEntity.
- Strongly_regular_graph comment "In graph theory, a strongly regular graph is defined as follows. Let G = (V,E) be a regular graph with v vertices and degree k. G is said to be strongly regular if there are also integers λ and μ such that: Every two adjacent vertices have λ common neighbours.".
- Strongly_regular_graph label "Grafo fortemente regular".
- Strongly_regular_graph label "Graphe fortement régulier".
- Strongly_regular_graph label "Strongly regular graph".
- Strongly_regular_graph label "Сильно регулярный граф".
- Strongly_regular_graph sameAs Graphe_fortement_régulier.
- Strongly_regular_graph sameAs Grafo_fortemente_regular.
- Strongly_regular_graph sameAs m.04zk6c.
- Strongly_regular_graph sameAs Q692823.
- Strongly_regular_graph sameAs Q692823.
- Strongly_regular_graph sameAs Strongly_regular_graph.
- Strongly_regular_graph wasDerivedFrom Strongly_regular_graph?oldid=602151783.
- Strongly_regular_graph depiction Paley13.svg.
- Strongly_regular_graph isPrimaryTopicOf Strongly_regular_graph.