Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Subharmonic_function> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Subharmonic_function abstract "In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a convex function and a line intersect at two points, then the graph of the convex function is below the line between those points. In the same way, if the values of a subharmonic function are no larger than the values of a harmonic function on the boundary of a ball, then the values of the subharmonic function are no larger than the values of the harmonic function also inside the ball.Superharmonic functions can be defined by the same description, only replacing "no larger" with "no smaller". Alternatively, a superharmonic function is just the negative of a subharmonic function, and for this reason any property of subharmonic functions can be easily transferred to superharmonic functions.".
- Subharmonic_function wikiPageID "3237359".
- Subharmonic_function wikiPageRevisionID "606155317".
- Subharmonic_function hasPhotoCollection Subharmonic_function.
- Subharmonic_function id "5796".
- Subharmonic_function title "Subharmonic and superharmonic functions".
- Subharmonic_function subject Category:Complex_analysis.
- Subharmonic_function subject Category:Potential_theory.
- Subharmonic_function subject Category:Subharmonic_functions.
- Subharmonic_function subject Category:Types_of_functions.
- Subharmonic_function type Abstraction100002137.
- Subharmonic_function type Function113783816.
- Subharmonic_function type MathematicalRelation113783581.
- Subharmonic_function type Relation100031921.
- Subharmonic_function type SubharmonicFunctions.
- Subharmonic_function comment "In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.Intuitively, subharmonic functions are related to convex functions of one variable as follows. If the graph of a convex function and a line intersect at two points, then the graph of the convex function is below the line between those points.".
- Subharmonic_function label "Fonction sous-harmonique".
- Subharmonic_function label "Subharmonic function".
- Subharmonic_function label "Subharmonische Funktion".
- Subharmonic_function label "Субгармоническая функция".
- Subharmonic_function sameAs Subharmonische_Funktion.
- Subharmonic_function sameAs Fonction_sous-harmonique.
- Subharmonic_function sameAs m.090f2v.
- Subharmonic_function sameAs Q753658.
- Subharmonic_function sameAs Q753658.
- Subharmonic_function sameAs Subharmonic_function.
- Subharmonic_function wasDerivedFrom Subharmonic_function?oldid=606155317.
- Subharmonic_function isPrimaryTopicOf Subharmonic_function.