Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Symmetric_algebra> ?p ?o. }
Showing items 1 to 39 of
39
with 100 items per page.
- Symmetric_algebra abstract "In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is the free commutative unital associative algebra over K containing V.It corresponds to polynomials with indeterminates in V, without choosing coordinates. The dual, S(V*) corresponds to polynomials on V.It should not be confused with symmetric tensors in V. A Frobenius algebra whose bilinear form is symmetric is also called a symmetric algebra, but is not discussed here.".
- Symmetric_algebra wikiPageID "654098".
- Symmetric_algebra wikiPageRevisionID "577981173".
- Symmetric_algebra hasPhotoCollection Symmetric_algebra.
- Symmetric_algebra subject Category:Algebras.
- Symmetric_algebra subject Category:Multilinear_algebra.
- Symmetric_algebra subject Category:Polynomials.
- Symmetric_algebra subject Category:Ring_theory.
- Symmetric_algebra type Abstraction100002137.
- Symmetric_algebra type Algebra106012726.
- Symmetric_algebra type Algebras.
- Symmetric_algebra type Cognition100023271.
- Symmetric_algebra type Content105809192.
- Symmetric_algebra type Discipline105996646.
- Symmetric_algebra type Function113783816.
- Symmetric_algebra type KnowledgeDomain105999266.
- Symmetric_algebra type MathematicalRelation113783581.
- Symmetric_algebra type Mathematics106000644.
- Symmetric_algebra type Polynomial105861855.
- Symmetric_algebra type Polynomials.
- Symmetric_algebra type PsychologicalFeature100023100.
- Symmetric_algebra type PureMathematics106003682.
- Symmetric_algebra type Relation100031921.
- Symmetric_algebra type Science105999797.
- Symmetric_algebra comment "In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is the free commutative unital associative algebra over K containing V.It corresponds to polynomials with indeterminates in V, without choosing coordinates. The dual, S(V*) corresponds to polynomials on V.It should not be confused with symmetric tensors in V. A Frobenius algebra whose bilinear form is symmetric is also called a symmetric algebra, but is not discussed here.".
- Symmetric_algebra label "Algebra simmetrica".
- Symmetric_algebra label "Symmetric algebra".
- Symmetric_algebra label "Symmetrische Algebra".
- Symmetric_algebra label "Симметрическая алгебра".
- Symmetric_algebra label "対称代数".
- Symmetric_algebra sameAs Symmetrische_Algebra.
- Symmetric_algebra sameAs Algebra_simmetrica.
- Symmetric_algebra sameAs 対称代数.
- Symmetric_algebra sameAs m.02_y7k.
- Symmetric_algebra sameAs Q1052674.
- Symmetric_algebra sameAs Q1052674.
- Symmetric_algebra sameAs Symmetric_algebra.
- Symmetric_algebra wasDerivedFrom Symmetric_algebra?oldid=577981173.
- Symmetric_algebra isPrimaryTopicOf Symmetric_algebra.