Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Symmetric_cone> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Symmetric_cone abstract "In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1933). The tube domain associated with a symmetric cone is a noncompact Hermitian symmetric space of tube type. All the algebraic and geometric structures associated with the symmetric space can be expressed naturally in terms of the Jordan algebra. The other irreducible Hermitian symmetric spaces of noncompact type correspond to Siegel domains of the second kind. These can be described in terms of more complicated structures called Jordan triple systems, which generalize Jordan algebras without identity.".
- Symmetric_cone wikiPageExternalLink 10.1007%2FBF00233101.
- Symmetric_cone wikiPageExternalLink irvine.pdf.
- Symmetric_cone wikiPageExternalLink 395.
- Symmetric_cone wikiPageExternalLink crll.1992.423.47.xml.
- Symmetric_cone wikiPageExternalLink 1968117.
- Symmetric_cone wikiPageExternalLink 1968118.
- Symmetric_cone wikiPageExternalLink joa.
- Symmetric_cone wikiPageExternalLink icm1970.1.0279.0284.ocr.pdf.
- Symmetric_cone wikiPageID "39156141".
- Symmetric_cone wikiPageRevisionID "605477919".
- Symmetric_cone subject Category:Convex_geometry.
- Symmetric_cone subject Category:Lie_algebras.
- Symmetric_cone subject Category:Lie_groups.
- Symmetric_cone subject Category:Non-associative_algebras.
- Symmetric_cone subject Category:Several_complex_variables.
- Symmetric_cone comment "In mathematics, symmetric cones, sometimes called domains of positivity, are open convex self-dual cones in Euclidean space which have a transitive group of symmetries, i.e. invertible operators that take the cone onto itself. By the Koecher–Vinberg theorem these correspond to the cone of squares in finite-dimensional real Euclidean Jordan algebras, originally studied and classified by Jordan, von Neumann & Wigner (1933).".
- Symmetric_cone label "Symmetric cone".
- Symmetric_cone sameAs m.0t528j2.
- Symmetric_cone sameAs Q17107455.
- Symmetric_cone sameAs Q17107455.
- Symmetric_cone wasDerivedFrom Symmetric_cone?oldid=605477919.
- Symmetric_cone isPrimaryTopicOf Symmetric_cone.