Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Symmetric_matrix> ?p ?o. }
Showing items 1 to 43 of
43
with 100 items per page.
- Symmetric_matrix abstract "In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric ifBecause equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if the entries are written as A = (aij), then aij = aji, for all indices i and j. The following 3×3 matrix is symmetric:Every square diagonal matrix is symmetric, since all off-diagonal entries are zero. Similarly, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.In linear algebra, a real symmetric matrix represents a self-adjoint operator over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.".
- Symmetric_matrix wikiPageExternalLink node66.html.
- Symmetric_matrix wikiPageID "126474".
- Symmetric_matrix wikiPageRevisionID "604897119".
- Symmetric_matrix hasPhotoCollection Symmetric_matrix.
- Symmetric_matrix id "p/s091680".
- Symmetric_matrix title "Symmetric matrix".
- Symmetric_matrix subject Category:Matrices.
- Symmetric_matrix type Abstraction100002137.
- Symmetric_matrix type Arrangement107938773.
- Symmetric_matrix type Array107939382.
- Symmetric_matrix type Group100031264.
- Symmetric_matrix type Matrices.
- Symmetric_matrix type Matrix108267640.
- Symmetric_matrix comment "In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric ifBecause equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if the entries are written as A = (aij), then aij = aji, for all indices i and j. The following 3×3 matrix is symmetric:Every square diagonal matrix is symmetric, since all off-diagonal entries are zero.".
- Symmetric_matrix label "Macierz symetryczna".
- Symmetric_matrix label "Matrice simmetrica".
- Symmetric_matrix label "Matrice symétrique".
- Symmetric_matrix label "Matriz simétrica".
- Symmetric_matrix label "Matriz simétrica".
- Symmetric_matrix label "Symmetric matrix".
- Symmetric_matrix label "Symmetrische Matrix".
- Symmetric_matrix label "Symmetrische matrix".
- Symmetric_matrix label "Симметричная матрица".
- Symmetric_matrix label "مصفوفة متماثلة".
- Symmetric_matrix label "対称行列".
- Symmetric_matrix label "對稱矩陣".
- Symmetric_matrix sameAs Symmetrische_Matrix.
- Symmetric_matrix sameAs Matriz_simétrica.
- Symmetric_matrix sameAs Matrize_simetriko.
- Symmetric_matrix sameAs Matrice_symétrique.
- Symmetric_matrix sameAs Matrice_simmetrica.
- Symmetric_matrix sameAs 対称行列.
- Symmetric_matrix sameAs 대칭행렬.
- Symmetric_matrix sameAs Symmetrische_matrix.
- Symmetric_matrix sameAs Macierz_symetryczna.
- Symmetric_matrix sameAs Matriz_simétrica.
- Symmetric_matrix sameAs m.0y00r.
- Symmetric_matrix sameAs Q339011.
- Symmetric_matrix sameAs Q339011.
- Symmetric_matrix sameAs Symmetric_matrix.
- Symmetric_matrix wasDerivedFrom Symmetric_matrix?oldid=604897119.
- Symmetric_matrix isPrimaryTopicOf Symmetric_matrix.