Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Tietze_extension_theorem> ?p ?o. }
Showing items 1 to 41 of
41
with 100 items per page.
- Tietze_extension_theorem abstract "In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem) states that, if X is a normal topological space andis a continuous map from a closed subset A of X into the real numbers carrying the standard topology, then there exists a continuous map with F(a) = f(a) for all a in A. Moreover, F may be chosen such that , i.e., if f is bounded, F may be chosen to be bounded (with the same bound as f). F is called a continuous extension of f.This theorem is equivalent to the Urysohn's lemma (which is also equivalent to the normality of the space) and is widely applicable, since all metric spaces and all compact Hausdorff spaces are normal. It can be generalized by replacing R with RJ for some indexing set J, any retract of RJ, or any normal absolute retract whatsoever.The theorem is due to Heinrich Franz Friedrich Tietze.".
- Tietze_extension_theorem wikiPageExternalLink TietzesExtensionTheorem.html.
- Tietze_extension_theorem wikiPageID "31404".
- Tietze_extension_theorem wikiPageRevisionID "587474503".
- Tietze_extension_theorem hasPhotoCollection Tietze_extension_theorem.
- Tietze_extension_theorem id "4215".
- Tietze_extension_theorem id "5566".
- Tietze_extension_theorem id "p/u095860".
- Tietze_extension_theorem title "Proof of Tietze extension theorem".
- Tietze_extension_theorem title "Tietze extension theorem".
- Tietze_extension_theorem title "Urysohn-Brouwer lemma".
- Tietze_extension_theorem subject Category:Continuous_mappings.
- Tietze_extension_theorem subject Category:Theorems_in_topology.
- Tietze_extension_theorem type Abstraction100002137.
- Tietze_extension_theorem type Communication100033020.
- Tietze_extension_theorem type ContinuousMappings.
- Tietze_extension_theorem type Function113783816.
- Tietze_extension_theorem type MathematicalRelation113783581.
- Tietze_extension_theorem type Message106598915.
- Tietze_extension_theorem type Proposition106750804.
- Tietze_extension_theorem type Relation100031921.
- Tietze_extension_theorem type Statement106722453.
- Tietze_extension_theorem type Theorem106752293.
- Tietze_extension_theorem type TheoremsInTopology.
- Tietze_extension_theorem comment "In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem) states that, if X is a normal topological space andis a continuous map from a closed subset A of X into the real numbers carrying the standard topology, then there exists a continuous map with F(a) = f(a) for all a in A. Moreover, F may be chosen such that , i.e., if f is bounded, F may be chosen to be bounded (with the same bound as f).".
- Tietze_extension_theorem label "Fortsetzungssatz von Tietze".
- Tietze_extension_theorem label "Teorema di estensione di Tietze".
- Tietze_extension_theorem label "Théorème de prolongement de Tietze".
- Tietze_extension_theorem label "Tietze extension theorem".
- Tietze_extension_theorem label "Twierdzenie Tietzego".
- Tietze_extension_theorem sameAs Fortsetzungssatz_von_Tietze.
- Tietze_extension_theorem sameAs Théorème_de_prolongement_de_Tietze.
- Tietze_extension_theorem sameAs Teorema_di_estensione_di_Tietze.
- Tietze_extension_theorem sameAs 티체_확장정리.
- Tietze_extension_theorem sameAs Twierdzenie_Tietzego.
- Tietze_extension_theorem sameAs m.07qjn.
- Tietze_extension_theorem sameAs Q1346677.
- Tietze_extension_theorem sameAs Q1346677.
- Tietze_extension_theorem sameAs Tietze_extension_theorem.
- Tietze_extension_theorem wasDerivedFrom Tietze_extension_theorem?oldid=587474503.
- Tietze_extension_theorem isPrimaryTopicOf Tietze_extension_theorem.