Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Triality> ?p ?o. }
Showing items 1 to 23 of
23
with 100 items per page.
- Triality abstract "In mathematics, triality is a relationship among three vector spaces, analogous to the duality relation between dual vector spaces. Most commonly, it describes those special features of the Dynkin diagram D4 and the associated Lie group Spin(8), the double cover of 8-dimensional rotation group SO(8), arising because the group has an outer automorphism of order three. There is a geometrical version of triality, analogous to duality in projective geometry.Of all simple Lie groups, Spin(8) has the most symmetrical Dynkin diagram, D4. The diagram has four nodes with one node located at the center, and the other three attached symmetrically. The symmetry group of the diagram is the symmetric group S3 which acts by permuting the three legs. This gives rise to an S3 group of outer automorphisms of Spin(8). This automorphism group permutes the three 8-dimensional irreducible representations of Spin(8); these being the vector representation and two chiral spin representations. These automorphisms do not project to automorphisms of SO(8). The vector representation—the natural action of SO(8) (hence Spin(8)) on K8—over real numbers it consists of Euclidean 8-vectors and is generally known as the "defining module", while the chiral spin representations are also known as "half-spin representations", and all three of these are fundamental representations.No other Dynkin diagram has an automorphism group of order greater than 2; for other Dn (corresponding to other even Spin groups, Spin(2n)), there is still the automorphism corresponding to switching the two half-spin representations, but these are not isomorphic to the vector representation.Roughly speaking, symmetries of the Dynkin diagram lead to automorphisms of the Bruhat–Tits building associated with the group. For special linear groups, one obtains projective duality. For Spin(8), one finds a curious phenomenon involving 1-, 2-, and 4-dimensional subspaces of 8-dimensional space, historically known as "geometric triality".The exceptional 3-fold symmetry of the D4 diagram also gives rise to the Steinberg group 3D4.".
- Triality thumbnail Dynkin_diagram_D4.png?width=300.
- Triality wikiPageExternalLink zometriality.htm.
- Triality wikiPageExternalLink node7.html.
- Triality wikiPageID "683109".
- Triality wikiPageRevisionID "601870250".
- Triality date "February 2014".
- Triality hasPhotoCollection Triality.
- Triality reason "Is this K the F below?".
- Triality subject Category:Lie_groups.
- Triality subject Category:Spinors.
- Triality type Abstraction100002137.
- Triality type Group100031264.
- Triality type LieGroups.
- Triality comment "In mathematics, triality is a relationship among three vector spaces, analogous to the duality relation between dual vector spaces. Most commonly, it describes those special features of the Dynkin diagram D4 and the associated Lie group Spin(8), the double cover of 8-dimensional rotation group SO(8), arising because the group has an outer automorphism of order three.".
- Triality label "Triality".
- Triality sameAs m.032nfs.
- Triality sameAs Q17104294.
- Triality sameAs Q17104294.
- Triality sameAs Triality.
- Triality wasDerivedFrom Triality?oldid=601870250.
- Triality depiction Dynkin_diagram_D4.png.
- Triality isPrimaryTopicOf Triality.