Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Triangle_group> ?p ?o. }
Showing items 1 to 40 of
40
with 100 items per page.
- Triangle_group abstract "In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles, a fundamental domain for the action, called a Möbius triangle.".
- Triangle_group wikiPageExternalLink books?id=iLkzandfCc8C&pg=PA52.
- Triangle_group wikiPageExternalLink books?id=mrv9OJVdy_cC&pg=RA1-PA279.
- Triangle_group wikiPageExternalLink images4.html.
- Triangle_group wikiPageExternalLink trigroup.html.
- Triangle_group wikiPageExternalLink vlib.gif.
- Triangle_group wikiPageID "2069342".
- Triangle_group wikiPageRevisionID "599400910".
- Triangle_group hasPhotoCollection Triangle_group.
- Triangle_group id "5925".
- Triangle_group title "Triangle groups".
- Triangle_group subject Category:Coxeter_groups.
- Triangle_group subject Category:Euclidean_geometry.
- Triangle_group subject Category:Finite_groups.
- Triangle_group subject Category:Geometric_group_theory.
- Triangle_group subject Category:Hyperbolic_geometry.
- Triangle_group subject Category:Polyhedra.
- Triangle_group subject Category:Properties_of_groups.
- Triangle_group subject Category:Spherical_trigonometry.
- Triangle_group subject Category:Tessellation.
- Triangle_group type Abstraction100002137.
- Triangle_group type CoxeterGroups.
- Triangle_group type FiniteGroups.
- Triangle_group type Group100031264.
- Triangle_group type Possession100032613.
- Triangle_group type PropertiesOfGroups.
- Triangle_group type Property113244109.
- Triangle_group type Relation100031921.
- Triangle_group comment "In mathematics, a triangle group is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles, a fundamental domain for the action, called a Möbius triangle.".
- Triangle_group label "Driehoeksgroep".
- Triangle_group label "Gruppo triangolare".
- Triangle_group label "Triangle group".
- Triangle_group sameAs Gruppo_triangolare.
- Triangle_group sameAs Driehoeksgroep.
- Triangle_group sameAs m.06j_pq.
- Triangle_group sameAs Q652123.
- Triangle_group sameAs Q652123.
- Triangle_group sameAs Triangle_group.
- Triangle_group wasDerivedFrom Triangle_group?oldid=599400910.
- Triangle_group isPrimaryTopicOf Triangle_group.