Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Valentiner_group> ?p ?o. }
Showing items 1 to 28 of
28
with 100 items per page.
- Valentiner_group abstract "In mathematics, the Valentiner group is the perfect triple cover of the alternating group on 6 points, and is a group of order 1080. It was found by Herman Valentiner (1889) in the form of an action of A6 on the complex projective plane, and was studied further by Wiman (1896). All perfect alternating groups have perfect double covers. In most cases this is the universal central extension. The two exceptions are A6 (whose perfect triple cover is the Valentiner group) and A7, whose universal central extensions have centers of order 6.".
- Valentiner_group wikiPageExternalLink S0002-9939-04-07539-2.
- Valentiner_group wikiPageExternalLink index.php?id=11&PPN=PPN235181684_0047&DMDID=DMDLOG_0041&L=1.
- Valentiner_group wikiPageExternalLink index.php?id=11&PPN=PPN235181684_0050&DMDID=DMDLOG_0039&L=1.
- Valentiner_group wikiPageExternalLink index.php?id=11&PPN=PPN235181684_0070&DMDID=DMDLOG_0036&L=1.
- Valentiner_group wikiPageExternalLink 1047262404.
- Valentiner_group wikiPageExternalLink deendeligetrans00valegoog.
- Valentiner_group wikiPageID "31735629".
- Valentiner_group wikiPageRevisionID "573196965".
- Valentiner_group authorlink "Herman Valentiner".
- Valentiner_group b "4".
- Valentiner_group first "Herman".
- Valentiner_group hasPhotoCollection Valentiner_group.
- Valentiner_group last "Valentiner".
- Valentiner_group p "6".
- Valentiner_group year "1889".
- Valentiner_group subject Category:Finite_groups.
- Valentiner_group type Abstraction100002137.
- Valentiner_group type FiniteGroups.
- Valentiner_group type Group100031264.
- Valentiner_group comment "In mathematics, the Valentiner group is the perfect triple cover of the alternating group on 6 points, and is a group of order 1080. It was found by Herman Valentiner (1889) in the form of an action of A6 on the complex projective plane, and was studied further by Wiman (1896). All perfect alternating groups have perfect double covers. In most cases this is the universal central extension.".
- Valentiner_group label "Valentiner group".
- Valentiner_group sameAs m.0gtt4lz.
- Valentiner_group sameAs Q7911038.
- Valentiner_group sameAs Q7911038.
- Valentiner_group sameAs Valentiner_group.
- Valentiner_group wasDerivedFrom Valentiner_group?oldid=573196965.
- Valentiner_group isPrimaryTopicOf Valentiner_group.