Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Verlet_integration> ?p ?o. }
Showing items 1 to 37 of
37
with 100 items per page.
- Verlet_integration abstract "Verlet integration (French pronunciation: [vɛʁˈlɛ]) is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Delambre, and has been rediscovered many times since then, most recently by Loup Verlet in 1960s for molecular dynamics. It was also used by Cowell and Crommelin in 1909 to compute the orbit of Halley's Comet, and by Carl Størmer in 1907 to study the motion of electrical particles in a magnetic field.The Verlet integrator offers greater stability, as well as other properties that are important in physical systems such as time-reversibility and preservation of the symplectic form on phase space, at no significant additional cost over the simple Euler method. Verlet integration was used by Carl Størmer to compute the trajectories of particles moving in a magnetic field (hence it is also called Störmer's method) and was popularized in molecular dynamics by French physicist Loup Verlet in 1967.".
- Verlet_integration wikiPageExternalLink superlu_ug.pdf.
- Verlet_integration wikiPageExternalLink verlet.googlecode.com.
- Verlet_integration wikiPageExternalLink MD.Part1.html.
- Verlet_integration wikiPageExternalLink index.html.
- Verlet_integration wikiPageExternalLink node21.html.
- Verlet_integration wikiPageExternalLink jacobson_pfv.htm.
- Verlet_integration wikiPageID "825735".
- Verlet_integration wikiPageRevisionID "605396365".
- Verlet_integration hasPhotoCollection Verlet_integration.
- Verlet_integration subject Category:Numerical_differential_equations.
- Verlet_integration type Abstraction100002137.
- Verlet_integration type Communication100033020.
- Verlet_integration type DifferentialEquation106670521.
- Verlet_integration type Equation106669864.
- Verlet_integration type MathematicalStatement106732169.
- Verlet_integration type Message106598915.
- Verlet_integration type NumericalDifferentialEquations.
- Verlet_integration type Statement106722453.
- Verlet_integration comment "Verlet integration (French pronunciation: [vɛʁˈlɛ]) is a numerical method used to integrate Newton's equations of motion. It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics. The algorithm was first used in 1791 by Delambre, and has been rediscovered many times since then, most recently by Loup Verlet in 1960s for molecular dynamics.".
- Verlet_integration label "Algorytm Verleta".
- Verlet_integration label "Intégration de Verlet".
- Verlet_integration label "Método de Verlet".
- Verlet_integration label "Verlet integration".
- Verlet_integration label "Интегрирование Верле".
- Verlet_integration label "ベレの方法".
- Verlet_integration label "韦尔莱积分法".
- Verlet_integration sameAs Intégration_de_Verlet.
- Verlet_integration sameAs ベレの方法.
- Verlet_integration sameAs Algorytm_Verleta.
- Verlet_integration sameAs Método_de_Verlet.
- Verlet_integration sameAs m.03f681.
- Verlet_integration sameAs Q2984997.
- Verlet_integration sameAs Q2984997.
- Verlet_integration sameAs Verlet_integration.
- Verlet_integration wasDerivedFrom Verlet_integration?oldid=605396365.
- Verlet_integration isPrimaryTopicOf Verlet_integration.