Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Villarceau_circles> ?p ?o. }
Showing items 1 to 41 of
41
with 100 items per page.
- Villarceau_circles abstract "In geometry, Villarceau circles /viːlɑrˈsoʊ/ are a pair of circles produced by cutting a torus diagonally through the center at the correct angle. Given an arbitrary point on a torus, four circles can be drawn through it. One is in the plane (containing the point) parallel to the equatorial plane of the torus. Another is perpendicular to it. The other two are Villarceau circles. They are named after the French astronomer and mathematician Yvon Villarceau (1813–1883). Mannheim (1903) showed that the Villarceau circles meet all of the parallel circular cross-sections of the torus at the same angle, a result that he said a Colonel Schoelcher had presented at a congress in 1891.".
- Villarceau_circles thumbnail Villarceau_circles.gif?width=300.
- Villarceau_circles wikiPageExternalLink Torus.html.
- Villarceau_circles wikiPageExternalLink hypertorus.html.
- Villarceau_circles wikiPageExternalLink jgg06.htm.
- Villarceau_circles wikiPageExternalLink article-les-cercles-du-tore-38982808.html.
- Villarceau_circles wikiPageID "1547360".
- Villarceau_circles wikiPageRevisionID "557756184".
- Villarceau_circles hasPhotoCollection Villarceau_circles.
- Villarceau_circles subject Category:Circles.
- Villarceau_circles subject Category:Fiber_bundles.
- Villarceau_circles subject Category:Toric_sections.
- Villarceau_circles type Abstraction100002137.
- Villarceau_circles type Attribute100024264.
- Villarceau_circles type AuditoryCommunication107109019.
- Villarceau_circles type Circle113873502.
- Villarceau_circles type Circles.
- Villarceau_circles type Communication100033020.
- Villarceau_circles type ConicSection113872975.
- Villarceau_circles type Ellipse113878306.
- Villarceau_circles type Figure113862780.
- Villarceau_circles type Music107020895.
- Villarceau_circles type PlaneFigure113863186.
- Villarceau_circles type Section106392001.
- Villarceau_circles type Shape100027807.
- Villarceau_circles type ToricSections.
- Villarceau_circles type Writing106362953.
- Villarceau_circles type WrittenCommunication106349220.
- Villarceau_circles comment "In geometry, Villarceau circles /viːlɑrˈsoʊ/ are a pair of circles produced by cutting a torus diagonally through the center at the correct angle. Given an arbitrary point on a torus, four circles can be drawn through it. One is in the plane (containing the point) parallel to the equatorial plane of the torus. Another is perpendicular to it. The other two are Villarceau circles. They are named after the French astronomer and mathematician Yvon Villarceau (1813–1883).".
- Villarceau_circles label "Cercles de Villarceau".
- Villarceau_circles label "Villarceau circles".
- Villarceau_circles label "Окружности Вилларсо".
- Villarceau_circles label "دائرتا فيلاركو".
- Villarceau_circles sameAs Cercles_de_Villarceau.
- Villarceau_circles sameAs m.059dy0.
- Villarceau_circles sameAs Q2510719.
- Villarceau_circles sameAs Q2510719.
- Villarceau_circles sameAs Villarceau_circles.
- Villarceau_circles wasDerivedFrom Villarceau_circles?oldid=557756184.
- Villarceau_circles depiction Villarceau_circles.gif.
- Villarceau_circles isPrimaryTopicOf Villarceau_circles.