Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Whitney_embedding_theorem> ?p ?o. }
Showing items 1 to 31 of
31
with 100 items per page.
- Whitney_embedding_theorem abstract "In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney:The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space (R2m</span>), if m > 0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into real (2m − 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney).The weak Whitney embedding theorem states that any continuous function from an n-dimensional manifold to an m-dimensional manifold may be approximated by a smooth embedding provided m > 2n. Whitney similarly proved that such a map could be approximated by an immersion provided m > 2n − 1. This last result is sometimes called the weak Whitney immersion theorem.".
- Whitney_embedding_theorem thumbnail Whitneytrickstep1.svg?width=300.
- Whitney_embedding_theorem wikiPageExternalLink books?id=JcMwHWSBSB4C.
- Whitney_embedding_theorem wikiPageExternalLink High_codimension_embeddings:_classification.
- Whitney_embedding_theorem wikiPageExternalLink High_codimension_embeddings:_classification.
- Whitney_embedding_theorem wikiPageID "477578".
- Whitney_embedding_theorem wikiPageRevisionID "560310693".
- Whitney_embedding_theorem hasPhotoCollection Whitney_embedding_theorem.
- Whitney_embedding_theorem type Abstraction100002137.
- Whitney_embedding_theorem type Communication100033020.
- Whitney_embedding_theorem type Message106598915.
- Whitney_embedding_theorem type Proposition106750804.
- Whitney_embedding_theorem type Statement106722453.
- Whitney_embedding_theorem type Theorem106752293.
- Whitney_embedding_theorem type TheoremsInDifferentialTopology.
- Whitney_embedding_theorem comment "In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney:The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space (R2m</span>), if m > 0.".
- Whitney_embedding_theorem label "Einbettungssatz von Whitney".
- Whitney_embedding_theorem label "Inbeddingstelling van Whitney".
- Whitney_embedding_theorem label "Théorème de plongement de Whitney".
- Whitney_embedding_theorem label "Whitney embedding theorem".
- Whitney_embedding_theorem label "Теорема Уитни о вложении".
- Whitney_embedding_theorem sameAs Einbettungssatz_von_Whitney.
- Whitney_embedding_theorem sameAs Théorème_de_plongement_de_Whitney.
- Whitney_embedding_theorem sameAs Inbeddingstelling_van_Whitney.
- Whitney_embedding_theorem sameAs m.02f8j1.
- Whitney_embedding_theorem sameAs Q1306095.
- Whitney_embedding_theorem sameAs Q1306095.
- Whitney_embedding_theorem sameAs Whitney_embedding_theorem.
- Whitney_embedding_theorem wasDerivedFrom Whitney_embedding_theorem?oldid=560310693.
- Whitney_embedding_theorem depiction Whitneytrickstep1.svg.
- Whitney_embedding_theorem isPrimaryTopicOf Whitney_embedding_theorem.