Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Wiedersehen_pair> ?p ?o. }
Showing items 1 to 16 of
16
with 100 items per page.
- Wiedersehen_pair abstract "In mathematics—specifically, in Riemannian geometry—a Wiedersehen pair is a pair of distinct points x and y on a (usually, but not necessarily, two-dimensional) compact Riemannian manifold (M, g) such that every geodesic through x also passes through y (and the same with x and y interchanged).For example, on an ordinary sphere where the geodesics are great circles, the Wiedersehen pairs are exactly the pairs of antipodal points.If every point of an oriented manifold (M, g) belongs to a Wiedersehen pair, then (M, g) is said to be a Wiedersehen manifold. The concept was introduced by the Austro-Hungarian mathematician Wilhelm Blaschke and comes from the German term meaning "seeing again". As it turns out, in each dimension n the only Wiedersehen manifold (up to isometry) is the standard Euclidean n-sphere. Initially known as the Blaschke conjecture, this result was established by combined works of Berger, Kazdan, Weinstein (for even n), and Yang (odd n).".
- Wiedersehen_pair wikiPageID "12845170".
- Wiedersehen_pair wikiPageRevisionID "529796231".
- Wiedersehen_pair hasPhotoCollection Wiedersehen_pair.
- Wiedersehen_pair title "Wiedersehen pair".
- Wiedersehen_pair title "Wiedersehen surface".
- Wiedersehen_pair urlname "WiedersehenPair".
- Wiedersehen_pair urlname "WiedersehenSurface".
- Wiedersehen_pair subject Category:Riemannian_geometry.
- Wiedersehen_pair comment "In mathematics—specifically, in Riemannian geometry—a Wiedersehen pair is a pair of distinct points x and y on a (usually, but not necessarily, two-dimensional) compact Riemannian manifold (M, g) such that every geodesic through x also passes through y (and the same with x and y interchanged).For example, on an ordinary sphere where the geodesics are great circles, the Wiedersehen pairs are exactly the pairs of antipodal points.If every point of an oriented manifold (M, g) belongs to a Wiedersehen pair, then (M, g) is said to be a Wiedersehen manifold. ".
- Wiedersehen_pair label "Wiedersehen pair".
- Wiedersehen_pair sameAs m.02x7bd_.
- Wiedersehen_pair sameAs Q7998903.
- Wiedersehen_pair sameAs Q7998903.
- Wiedersehen_pair wasDerivedFrom Wiedersehen_pair?oldid=529796231.
- Wiedersehen_pair isPrimaryTopicOf Wiedersehen_pair.