Matches in DBpedia 2014 for { <http://dbpedia.org/resource/Wilson_prime> ?p ?o. }
Showing items 1 to 42 of
42
with 100 items per page.
- Wilson_prime abstract "A Wilson prime, named after English mathematician John Wilson, is a prime number p such that p2 divides (p − 1)! + 1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p − 1)! + 1.The only known Wilson primes are 5, 13, and 563 (sequence A007540 in OEIS); if any others exist, they must be greater than 2×1013. It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval [x, y] is about log(log(y)/log(x)).Several computer searches have been done in the hope of finding new Wilson primes.The Ibercivis distributed computing project includes a search for Wilson primes. Another search is coordinated at the mersenneforum.".
- Wilson_prime wikiPageExternalLink Emma_Lehmer_1938.pdf.
- Wilson_prime wikiPageExternalLink page.php?sort=WilsonPrime.
- Wilson_prime wikiPageExternalLink S0025-5718-1963-0159780-0.pdf.
- Wilson_prime wikiPageExternalLink Wieferich.status.
- Wilson_prime wikiPageID "323646".
- Wilson_prime wikiPageRevisionID "605162673".
- Wilson_prime author Emma_Lehmer.
- Wilson_prime firstTerms "513563".
- Wilson_prime hasPhotoCollection Wilson_prime.
- Wilson_prime largestKnownTerm "563".
- Wilson_prime namedAfter John_Wilson_(mathematician).
- Wilson_prime oeis "A007540".
- Wilson_prime publicationYear "1938".
- Wilson_prime termsNumber "3".
- Wilson_prime title "Wilson prime".
- Wilson_prime urlname "WilsonPrime".
- Wilson_prime subject Category:Classes_of_prime_numbers.
- Wilson_prime subject Category:Factorial_and_binomial_topics.
- Wilson_prime type Abstraction100002137.
- Wilson_prime type Class107997703.
- Wilson_prime type ClassesOfPrimeNumbers.
- Wilson_prime type Collection107951464.
- Wilson_prime type Group100031264.
- Wilson_prime comment "A Wilson prime, named after English mathematician John Wilson, is a prime number p such that p2 divides (p − 1)! + 1, where "!" denotes the factorial function; compare this with Wilson's theorem, which states that every prime p divides (p − 1)! + 1.The only known Wilson primes are 5, 13, and 563 (sequence A007540 in OEIS); if any others exist, they must be greater than 2×1013.".
- Wilson_prime label "Nombre de Wilson".
- Wilson_prime label "Numero di Wilson".
- Wilson_prime label "Número primo de Wilson".
- Wilson_prime label "Wilson prime".
- Wilson_prime label "Wilson-Primzahl".
- Wilson_prime label "Число Вильсона".
- Wilson_prime label "威爾遜質數".
- Wilson_prime sameAs Wilson-Primzahl.
- Wilson_prime sameAs Número_primo_de_Wilson.
- Wilson_prime sameAs Nombre_de_Wilson.
- Wilson_prime sameAs Numero_di_Wilson.
- Wilson_prime sameAs m.01vvsw.
- Wilson_prime sameAs Q1759811.
- Wilson_prime sameAs Q1759811.
- Wilson_prime sameAs Wilson_prime.
- Wilson_prime wasDerivedFrom Wilson_prime?oldid=605162673.
- Wilson_prime isPrimaryTopicOf Wilson_prime.